PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 100 | 86-98
Article title

Nanotoxicology and Human Health

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The particular chemical-physical properties of nanomaterials make them exploitable in different fields of application. Nanoparticles represent fundamental instruments for medicine and biology, because they can be used for biomedical applications (diagnosis, therapy, theranostics, etc.). However, their development with therapeutic efficacy requires in-depth knowledge of the interactions with cells, for both improving their efficiency use and to reduce its toxic effect. Physics and mathematical modelling help in understanding the diffusion mechanisms of charges inside a nanostructure and therefore in the comprehension of carrier dynamics at that scale.
Discipline
Publisher

Year
Volume
100
Pages
86-98
Physical description
Contributors
author
  • University of Padova, School of Engineering & Department of Neuroscience, Stradella S. Nicola 3, I-36100 Vicenza, Italy
References
  • [1] Gatti, A. M.,‎ Montanari, S. 2015. Case Studies in Nanotoxicology and Particle Toxicology. Cambridge: Academic Press.
  • [2] Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., and Cox, C. 2004. Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology 16(6-7): 437-445. doi: 10.1080/08958370490439597.
  • [3] Singh, S., Nalwa, H. S. 2007. Nanotechnology and health safety: toxicity and risk assessments of nanostructured materials on human health. Journal of Nanoscience and Nanotechnology 7: 3048-70.
  • [4] Di Sia, P. 2016. Advances in Analytical Modelling for (Nano)medicine. International Journal of Innovative Science, Engineering and Technology 3(5): 511-515.
  • [5] Lomer, M. C., Thompson, R. P., Powell, J. J. 2002. Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn's disease. The Proceedings of the Nutrition Society 61(1): 123-30.
  • [6] Etheridge, M. L., Campbell, S. A., Erdman, A. G., Haynes, C. L., Wolf, S. M., and McCullough, J. 2013. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 9(1): 1-14. doi: 10.1016/j.nano.2012.05.013.
  • [7] Di Sia, P. 2014. Interesting Details about Diffusion of Nanoparticles for Diagnosis and Treatment in Medicine by a new analytical theoretical Model. Journal of Nanotechnology in Diagnosis and Treatment 2(1): 6-10.
  • [8] Di Sia, P. 2011. An Analytical Transport Model for Nanomaterials. Journal of Computational and Theoretical Nanoscience 8: 84-89.
  • [9] Di Sia, P. 2012. An Analytical Transport Model for Nanomaterials: The Quantum Version. Journal of Computational and Theoretical Nanoscience 9(1): 31-34.
  • [10] Di Sia, P. 2012. Modelling at Nanoscale. In: Plasmonics - Principles and Applications. Rijeka: InTech. doi: 10.5772/50755.
  • [11] Gwinn, M. R., Vallyathan, V. 2006. Nanoparticles: Health Effects-Pros and Cons. Environmental Health Perspectives 114(12): 1818-25. doi: 10.1289/ehp.8871.
  • [12] Di Sia, P. 2014. Relativistic nano-transport and artificial neural networks: details by a new analytical model. International Journal of Artificial Intelligence and Mechatronics 3(3): 96-100.
  • [13] Di Sia, P. 2015. A new analytical transport model for (nano)physics. International Research Journal of Engineering and Technology 2(7): 1-4.
  • [14] Butler, M., Boyle, J. J., Powell, J. J., Playford, R. J., Ghosh, S. 2007. Dietary microparticles implicated in Crohn's disease can impair macrophage phagocytic activity and act as adjuvants in the presence of bacterial stimuli. Inflammation Research 56(9): 353-61. doi: 10.1007/s00011-007-7068-4.
  • [15] Hoet, P. H., Brüske-Hohlfeld, I., Salata, O. V. 2004. Nanoparticles - known and unknown health risks. Journal of Nanobiotechnology 2(1): 12. doi: 10.1186/1477-3155-2-12.
  • [16] Hagens, W. I., Oomen, A. G., de Jong, W. H., Cassee, F. R., Sips, A. J. 2007. What do we (need to) know about the kinetic properties of nanoparticles in the body?. Regulatory Toxicology and Pharmacology 49(3): 217-29. doi: 10.1016/j.yrtph.2007.07.006.
  • [17] Wachsmann, P., Lamprecht, A. 2012. Polymeric nanoparticles for the selective therapy of inflammatory bowel disease. Methods in Enzymology 508: 377-97. doi: 10.1016/B978-0-12-391860-4.00019-7.
  • [18] Saraiva, C., Praça, C., Ferreira, R., Santos, T., Ferreira, L., Bernardino, L. 2016. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. Journal of Controlled Release 235(10): 34-47. https://doi.org/10.1016/j.jconrel.2016.05.044.
  • [19] Muoth, C., Aengenheister, L., Kucki, M., Wick, P., Buerki-Thurnherr, T. 2016. Nanoparticle transport across the placental barrier: pushing the field forward!. Nanomedicine 11(8): 941-57. doi: 10.2217/nnm-2015-0012.
  • [20] Chithrani, B. D., Chan, W. C. 2007. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Letters 7: 1542-1550.
  • [21] Gupta, A. K., Gupta M. 2005. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26: 1565-1573.
  • [22] Swanson, J. A., Watts, C. 1995. Macropinocytosis. Trends in Cell Biology 5: 424-8.
  • [23] Takei, K., Haucke, V. 2001. Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends in Cell Biology 11: 385-91.
  • [24] Shin, J. S., Abraham, S. N. 2007. Caveolae-not just craters in the cellular landscape. Science 293: 1447-8.
  • [25] Roser, M., Fischer, D., Kissel, T. 1998. Surface-modified-biodegradable albumin nano- and microspheres II: effects of surface charges on in vitro phagocytosis and biodistribution in rats. European Journal of Pharmaceutics and Biopharmaceutics 46: 255-63.
  • [26] Foged, C., Brodin, B., Frokjaer, S., Sundblad, A. 2005. Particle size and surface charge affect particle uptake by human dendritic cells in a vitro model. International Journal of Pharmaceutics 298: 315-22.
  • [27] Jin, Y., Kannan, S., Wu, M., Zhao, J. X. 2007. Toxicity of luminescent silica nanoparticles to living cells. Chemical Research in Toxicology 20: 1126-1133.
  • [28] Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schürch, S., Kreyling, W., Schulz, H., Semmler, M., Im Hof, V., Heyder, J., Gehr, P. 2005. Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells. Environmental Health Perspectives 113: 1555-60.
  • [29] Kim, J. S., Yoon, T. J., Yu, K. N., Noh, M. S., Woo, M., Kim, B. G., Lee, K. H., Sohn, B. H., Park, S. B., Lee, J. K. 2006. Cellular uptake of magnetic nanoparticles is mediated through energydependent endocytosis in A549 cells. Journal of Veterinary Science 7: 321-326.
  • [30] Choi, H. S., Liu, W., Misra, P., Tanaka, E., Zimmer, J. P., Ipe, B. I., Bawendi, M. G., and Frangioni, J. V. 2007. Renal Clearance of Nanoparticles. Nature Biotechnology 25(10): 1165-1170. doi: 10.1038/nbt1340.
  • [31] Di Sia, P. 2013. The Nanotechnologies World: Introduction, Applications and Modeling. In: Fundamentals and Applications. Houston: Studium Press LLC.
  • [32] Di Sia, P. 2014. Present and Future of Nanotechnologies: Peculiarities, Phenomenology, Theoretical Modelling, Perspectives. Reviews in Theoretical Science 2(2): 146-180.
  • [33] Di Sia, P. 2017. Nanotechnologies among Innovation, Health and Risks. Procedia - Social and Behavioral Sciences Journal 237: 1076-1080. http://dx.doi.org/10.1016/j.sbspro.2017.02.158.
  • [34] Di Sia, P. 2015. Present and Future of Nano-Bio-Technology: Innovation, Evolution of Science, Social Impact. The Online Journal of Educational Technology (TOJET). Special Issue 2 for INTE 2015: 442-449.
  • [35] Som, C., Berges, M., Chaudhry, Q., Dusinska, M., Fernandes, T. F., Olsen, S. I., Nowack, B. 2010. The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269: 160-169.
  • [36] Scown, T. M., Van Aerle, R., Tyler, C. R. 2010. Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Critical Reviews in Toxicology 40: 653-670.
  • [37] Theng, B. K. G., Yuan, G. 2008. Nanoparticles in the Soil Environment. Elements 4(6): 395–399. doi: https://doi.org/10.2113/gselements.4.6.395.
  • [38] Fröhlich, E., Roblegg, E. 2012. Models for oral uptake of nanoparticles in consumer products. Toxicology 291(1-3): 10-17. doi: 10.1016/j.tox.2011.11.004.
  • [39] Di Sia, P. 2019. Agri-food sector, biological systems and nanomaterials. In: Food Applications of Nanotechnology. Boca Raton: CRC Press (Taylor & Francis Group).
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-cc649444-b01f-4afa-821b-bf599a6e335e
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.