PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 155 | 36-46
Article title

Bandung City Rainfall Data Interpolation Using Two Types of Cubic Spline Interpolation

Content
Title variants
Languages of publication
EN
Abstracts
EN
This study discusses the application of two types of cubic spline, namely natural cubic spline and not-a-knotcubic spline. The applications of both types of splines are regarding rainfall data. The rainfall data studied were the monthly rainfall data for the year 2018 and 2019 in Bandung City which was obtained from the Bandung City Central Statistics Agency. Interpolation and analysis were carried out on all data using Maple software. As a result, interpolation using natural cubic spline and not-a-knotcubic spline shows a smoother and less oscillating graph than interpolation using Piecewise Linear and Polynomial Interpolation.
Discipline
Year
Volume
155
Pages
36-46
Physical description
Contributors
  • Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java 45363, Indonesia
  • Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java 45363, Indonesia
author
  • Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java 45363, Indonesia
References
  • [1] T. B. Joewono and H. Kubota. The charecteristics of paratransit and non-motorized transport in Bandung, Indonesia. J. East. Asia Soc. Transp. Stud. 2005, Volume 6, Pages 262-277. doi: 10.11175/easts.6.262
  • [2] Sinaga, D., Setyawati, W., Cheng, F.Y. et al. Investigation on daily exposure to PM2.5 in Bandung city, Indonesia using low-cost sensor. J Expo Sci Environ Epidemiol 30, 1001-1012 (2020). https://doi.org/10.1038/s41370-020-0256-9
  • [3] I. Azizan, S. A. B. A. Karim, and S. Suresh Kumar Raju, Fitting Rainfall Data by Using Cubic Spline Interpolation. MATEC Web of Conferences 225, 05001 (2018). doi: 10.1051/matecconf/201822505001
  • [4] Giarno, M. P. Hadi, S. Suprayogi, and S. Herumurti, Modified mean field bias and local bias for improvement bias corrected satellite rainfall estimates. Mausam, 69, 4 (October 2018) 543-552
  • [5] G. Giarno, D. Didiharyono, A. A. Fisu, and A. Mattingaragau, Influence Rainy and Dry Season to Daily Rainfall Interpolation in Complex Terrain of Sulawesi. IOP Conf. Ser.: Earth Environ. Sci. 469 (2020) 012003. doi: 10.1088/1755-1315/469/1/012003
  • [6] G. Giarno, M. P. Hadi, S. Suprayogi, and S. H. Murti. Distribution of Accuracy of TRMM Daily Rainfall in Makassar Strait. Forum Geogr. 32(1), 2018. DOI: 10.23917/forgeo.v32i1.5774
  • [7] Wolberg and Alfy. Monotonic cubic spline interpolation. 1999 Proceedings Computer Graphics International. Canmore, AB, Canada, 1999, pp. 188-195, doi: 10.1109/CGI.1999.777953
  • [8] R. J. Aliaga. Real-Time Estimation of Zero Crossings of Sampled Signals for Timing Using Cubic Spline Interpolation. IEEE Transactions on Nuclear Science, vol. 64, no. 8, pp. 2414-2422, Aug. 2017, doi: 10.1109/TNS.2017.2721103
  • [9] M. A. Raheem and E. A. Hussein. Feature extraction of brain event-related potentials using cubic spline technique. 2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA), Baghdad, Iraq, 2016, pp. 1-6, doi: 10.1109/AIC-MITCSA.2016.7759927
  • [10] K. Atkinson and W. Han, Theoretical numerical analysis: A functional analysis framework. 2009, Springer. ISBN 978-1-4419-0458-4
  • [11] W. A. Halang, R. Langlais, and E. Kugler. Cubic Spline Interpolation for the Calculation of Retention Indices in Temperature-Programmed Gas-Liquid Chromatography. Anal. Chem. 1978, 50, 13, 1829–1832. doi: 10.1021/ac50035a026
  • [12] F. J. Kastanek and D. R. Nielsen. Description of Soil Water Characteristics Using Cubic Spline Interpolation. Soil Sci. Soc. Am. J. Volume 65, Issue 2, March 2001, Pages 279-283. doi: 10.2136/sssaj2001.652279x
  • [13] T. Blu, P. Thevenaz and M. Unser. Linear interpolation revitalized. IEEE Transactions on Image Processing, vol. 13, no. 5, pp. 710-719, May 2004, doi: 10.1109/TIP.2004.826093
  • [14] Weiser, Alan, and Sergio E. Zarantonello. A Note on Piecewise Linear and Multilinear Table Interpolation in Many Dimensions. Mathematics of Computation 50, no. 181 (1988): 189-96. Accessed March 3, 2021. doi:10.2307/2007922
  • [15] Marco Congedo MA, Cem Özen MS & Leslie Sherlin BA (2002) Notes on EEG Resampling by Natural Cubic Spline Interpolation. Journal of Neurotherapy, 6: 4, 73-80, DOI: 10.1300/J184v06n04_08
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-cbf22d68-c7d1-43e0-8e96-9dc0f41fc165
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.