PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 12 | 4 | 205–214
Article title

Rola sygnalizacji purynergicznej i cytokin w indukcji procesów zapalnych w udarze niedokrwiennym mózgu

Authors
Content
Title variants
EN
Role of purinergic signalling and cytokines in the ischaemic stroke
Languages of publication
PL
Abstracts
EN
Inflammation plays an important role in the aetiology of various diseases of the central nervous system including the stroke. Accumulating evidence indicates that inflammation in the central nervous system is controlled by purinergic signalling. The mediators of purinergic signalling are extracellular nucleotides (e.g. ATP, ADP, UTP and UDP) and adenosine that act via activation of P2 and P1 purinergic receptors, respectively. The activation of P2 and P1 receptors is regulated by the enzymes ectonucleotidases that hydrolyse either extracellular nucleotides or adenosine. This review focuses on the role of purinergic signalling in the ischaemic stroke. We and others have demonstrated the presence of nucleotides and adenosine in the cerebrospinal fluid. We have also shown that the concentration of ATP and other nucleotides is increased in cerebrospinal fluid of patients with ischaemic stroke. Evidence suggests that the activation of P2 and P1 recep-tors have an opposite role in the ischaemic stroke, i.e. while the nucleoside adenosine exert neuroprotective effects, nucleotides generally promote the proinflammatory and apoptotic responses. P2X7, P2Y2, P2Y6, P2Y11 and P2Y12 are proposed to be involved in the central nervous system inflammation as they are expressed in the brain and their activation is known to control the key inflammatory processes such as release of inflammatory mediators (e.g. cytokines, NO), migration of leukocytes, phagocytosis, apoptosis and thrombosis. The activation of P2 receptors can also increase the release of excitatory neurotransmitters that further exacerbate the inflammatory response. Three cytokines whose release is controlled by P2 receptors have a major role in the ischaemic stroke, namely tumour necrosis factor alpha (TNF-α), interleukin 1 (IL-1) and interleukin 6 (IL-6). By promoting inflammation and thrombosis, these proinflammatory cytokines contribute to the increase in lesion size and thus functional impairment of the affected tissue. Cytokines as well as extracellular nucleotides are involved in leukocyte migration to lesions. By their adherence to endothelium, leukocytes impair cerebral blood circulation and thus exacerbate damage to the brain. The hydrolysis of nucleotides to adenosine by the ectonucleotidases leads to deactivation of proinflammatory responses. Similar effect can also be obtained with P2X7 and IL-1 receptor antagonists that are presently under clinical development and investigation.
PL
Wyniki badań opublikowanych w ostatnich latach wskazują, że indukcja stanów zapalnych w ośrodkowym układzie nerwowym może stanowić podstawę patofizjologiczną wielu chorób, w tym udaru niedokrwiennego mózgu. Istotną rolę w tych procesach przypisuje się sygnalizacji purynergicznej i cytokinom. Receptory purynergiczne P1 i P2 oraz enzymy uczestniczące w degradacji nukleotydów są szeroko rozpowszechnione na komórkach ośrodkowego układu nerwowego. Puryny i pirymidyny wykazują dwojakie działanie w udarze niedokrwiennym mózgu: pozytywne (neuroprotekcyjne) nukleozydów oraz negatywne (prozapalne i proapoptotyczne) nukleotydów. W przebiegu udaru niedokrwiennego mózgu udowodniono udział w indukcji procesów zapalnych trzech cytokin: czynnika martwicy nowotworów α (TNF-α), interleukiny 1 (IL-1) i interleukiny 6 (IL-6). Cytokiny prozapalne wywołują procesy zapalne i prozakrzepowe, przez co zwiększają obszar zawału, a w konsekwencji stopień deficytu neurologicznego. Cytokiny i ATP sprzyjają migracji leukocytów do miejsca niedokrwienia mózgu, natomiast adenozyna działa przeciwstawnie. Leukocyty, przylegając do śródbłonka, upośledzają przepływ mózgowy krwi, w wyniku czego nasilają uszkodzenie tkanki nerwowej. Na uwalnianie cytokin prozapalnych, głównie interleukiny 1β, wpływa aktywacja receptora P2X7. Przypuszcza się, że w procesach zapalnych ośrodkowego układu nerwowego mogą uczestniczyć także receptory: P2Y2, P2Y6, P2Y11, P2Y12. Wydaje się, że degradacja nukleotydów z powstaniem adenozyny może być skutecznym sposobem obniżenia stężenia w przestrzeni pozakomórkowej nukleotydów, jak również cytokin prozapalnych i wygaszania procesów zapalnych. Inną metodą osłabienia intensywności procesów zapalnych jest zastosowanie antagonistów receptora P2X7 oraz inhibitora receptora IL-1 (IL-1Ra). Obecnie prowadzone są badania zarówno nad potencjalnymi antagonistami receptora P2X7, jak i inhibitorem receptora IL-1 (IL-1Ra).
Discipline
Publisher

Year
Volume
12
Issue
4
Pages
205–214
Physical description
Contributors
References
  • 1. Wardas J.: Neuroprotective role of adenosine in the CNS. Pol. J. Pharmacol. 2002; 54: 313-326.
  • 2. Frizzo M., Lara D., Dahm K. i wsp.: Activation of glutamate uptake by guanosine in primary astrocyte cultures. Neuroreport 2001; 12: 879-881.
  • 3. Stone T.W., Ceruti S., Abbracchio M.P.: Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb. Exp. Pharmacol. 2009; 193: 535-587.
  • 4. Jarvis G.E., Humphries R.G., Robertson M.J., Leff P.: ADP can induce aggregation of human platelets via both P2Y1 and P2T receptors. Br. J. Pharmacol. 2000; 129: 275-282.
  • 5. Cieślak M., Komoszyński M.: Rola i potencjalne znaczenie terapeutyczne nukleotydów i nukleozydów w udarze niedokrwiennym mózgu. Aktualn. Neurol. 2004; 4: 126-131.
  • 6. Gachet C., Hechler B., Léon C. i wsp.: Activation of ADP receptors and platelet function. Thromb. Haemost. 1997; 78: 271-275.
  • 7. Gachet C.: ADP receptors of platelets and their inhibition. Thromb. Haemost. 2001; 86: 222-232.
  • 8. Hechler B., Eckly A., Ohlmann P. i wsp.: The P2Y1 receptor, necessary but not sufficient to support full ADP-inducted platelet aggregation, is not the target of the drug clopidogrel. Br. J. Haematol. 1998; 103: 858-866.
  • 9. Storey R.F., Sanderson H.M., White A.E. i wsp.: The central role of the P2T receptor in amplification of human platelet activation, aggregation, secretion and procoagulant activity. Br. J. Haematol. 2000; 110: 925-934.
  • 10. Gachet C.: P2Y12 receptors in platelets and other hematopoietic and non-hematopoietic cells. Purinergic Signal. 2012; 8: 609-619.
  • 11. Burnstock G.: Physiology and pathophysiology of purinergic neurotransmission. Physiol. Rev. 2007; 87: 659-797.
  • 12. Burnstock G., Krügel U., Abbracchio M.P., Illes P.: Purinergic signalling: from normal behaviour to pathological brain function. Prog. Neurobiol. 2011; 95: 229-274.
  • 13. Di Iorio P., Ballerini P., Traversa U. i wsp.: The antiapoptotic effect of guanosine is mediated by the activation of the PI 3-kinase/AKT/PKB pathway in cultured rat astrocytes. Glia 2004; 46: 356-368.
  • 14. Burnstock G.: Purinergic nerves. Pharmacol. Rev. 1972; 24: 509-581.
  • 15. Burnstock G.: Purine-mediated signaling in pain and visceral perception. Trends Pharmacol. Sci. 2001; 22: 182-188.
  • 16. Cieślak M.: Badania ektopuryn i ektopirymidyn w płynie mózgowo-rdzeniowym u chorych z udarem niedokrwiennym mózgu o różnej etiologii. Rozprawa na stopień doktora nauk medycznych. Wojskowy Instytut Medycyny Lotniczej w Warszawie, Warszawa 2009.
  • 17. Cieślak M., Mosińska J., Komoszyński M.: Changes in concentration of nucleotidic and nucleosidic agonist of P receptor in cerebrospinal fluid (CSF) of patients with neurological disorders. Eur. J. Neurol. 2004; 11 (supl. 2): 221.
  • 18. Czarnecka J., Cieślak M., Komoszyński M.: Application of solid phase extraction and high-performance liquid chromatography to qualitative and quantitative analysis of nucleotides and nucleosides in human cerebrospinal fluid. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005; 822: 85-90.
  • 19. Cieślak M., Czarnecka J., Komoszyński M.: The purine and pirymidine nucleotides of human cerebrospinal fluid. Eur. J. Neurol. 2005; 12 (supl. 2): 172.
  • 20. Cieślak M., Czarnecka J., Banach M., Komoszyński M.: ATP and ADP are present in cerebrospinal fluid of patients with ischemic stroke. Eur. J. Neurol. 2006; 13 (supl. 2): 61.
  • 21. Rodríguez-Núñez A., Camiña F., Lojo S. i wsp.: Concentrations of nucleotides, nucleosides, purine bases and urate in cerebrospinal fluid of children with meningitis. Acta Paediatr. 1993; 82: 849-852.
  • 22. Stover J., Lowitzsch K., Kempski O.S.: Cerebrospinal fluid hypoxanthine, xanthine and uric acid levels may reflect glutamate- mediated excitotoxicity in different neurological diseases. Neurosci. Lett. 1997; 238: 25-28.
  • 23. Dunan S., Anderson C.M., Keung E.C. i wsp.: P2X7 receptor- mediated release of excitatory amino acids from astrocytes. J. Neurosci. 2003; 23: 1320-1328.
  • 24. Matute C., Cavaliere F.: Neuroglial interactions mediated by purinergic signalling in the pathophysiology of CNS disorders. Semin. Cell Dev. Biol. 2011; 22: 252-259.
  • 25. Matute C.: Glutamate and ATP signalling in white matter pathology. J. Anat. 2011; 219: 53-64.
  • 26. Abbracchio M.P., Burnstock G.: Purinoreceptors: are there families of P2X and P2Y purinoreceptors? Pharmacol. Ther. 1994; 64: 445-475.
  • 27. Abbracchio M.P., Ceruti S.: P1 receptors and cytokine secretion. Purinergic Signal. 2007; 3: 13-25.
  • 28. Matute C., Torre I., Pérez-Cerdá F. i wsp.: P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J. Neurosci. 2007; 27: 9525-9533.
  • 29. Zalewska-Kaszubska J.: Rola adenozyny w procesach neurodegeneracyjnych. Neurol. Neurochir. Pol. 2002; 36: 329-336.
  • 30. Rathbone M.P., Middlemiss P.J., Gysbers J.W. i wsp.: Trophic effects of purines in neurons and glial cells. Prog. Neurobiol. 1999; 59: 663-690.
  • 31. Ballerini P., Di Iorio P., Caciagli F. i wsp.: P2Y2 receptor upregulation induced by guanosine or UTP in rat brain cultured astrocytes. Int. J. Immunopathol. Pharmacol. 2006; 19: 293-308.
  • 32. Lambertsen K.L., Meldgaard M., Ladeby R., Finsen B.: A quantitative study of microglial-macrophage synthesis of tumor necrosis factor during acute and late focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab. 2005; 25: 119-135.
  • 33. Clausen B.H., Lambertsen K.L., Meldgaard M., Finsen B.: A quantitative in situ hybridization and polymerase chain reaction study of microglial-macrophage expression of interleukin-1β mRNA following permanent middle cerebral artery occlusion in mice. Neuroscience 2005; 132: 879-892.
  • 34. Clausen B.H., Lambertsen K.L., Babcock A.A. i wsp.: Interleukin- 1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J. Neuroinflamation 2008; 5: 46.
  • 35. Boutin H., LeFeuvre R.A., Horai R. i wsp.: Role of IL-1α and IL-1β in ischemic brain damage. J. Neurosci. 2001; 21: 5528-5534.
  • 36. Lambertsen K.L., Biber K., Finsen B.: Inflammatory cytokines in experimental and human stroke. J. Cereb. Blood Flow Metab. 2012; 32: 1677-1698.
  • 37. Maas M., Furie K.: Molecular biomarkers in stroke diagnosis and prognosis. Biomark. Med. 2009; 3: 363-383.
  • 38. Sairanen T., Carpén O., Karjalainen-Lindsberg M.L. i wsp.: Evolution of cerebral tumor necrosis factor-α production during human ischemic stroke. Stroke 2001; 32: 1750-1758.
  • 39. Dziewulska D., Mossakowski M.J.: Cellular expression of tumor necrosis factor and its receptors in human ischemic stroke. Clin. Neuropathol. 2003; 22: 35-40.
  • 40. Zaremba J., Losy J.: Cytokiny w klinicznym i doświadczalnym udarze niedokrwiennym mózgu. Neurol. Neurochir. Pol. 2004; 38 (supl. 1): 57-62.
  • 41. Zaremba J., Losy J.: Early TNF-α levels correlate with ischaemic stroke severity. Acta Neurol. Scand. 2001; 104: 288-295.
  • 42.Zaremba J., Skrobanski P., Losy J.: Tumour necrosis factoralpha is increased in the cerebrospinal fluid and serum of ischaemic stroke patients and correlates with the volume of evolving brain infarct. Biomed. Pharmacother. 2001; 55: 258-263.
  • 43. Kes V., Simundic A., Nicolac N. i wsp.: Pro-inflammatory and anti-inflammatory cytokines in acute ischemic stroke and their relation to early neurological deficit and stroke outcome. Clin. Biochem. 2008; 41: 1330-1334.
  • 44. De Bilbao F., Arsenijevic D., Moll T. i wsp.: In vivo overexpression of interleukin-10 increases resistance to focal brain ischemia in mice. J. Neurochem. 2009; 110: 12-22.
  • 45. Tuttolomondo A., Di Raimondo D., di Sciacca R. i wsp.: Inflammatory cytokines in acute ischemic stroke. Curr. Pharm. Des. 2008; 14: 3574-3589.
  • 46. Biber K., Pinto-Duarte A., Wittendrop M.C.: Interleukin-6 upregulates neuronal adenosine A1 receptors: implications for neuromodulation and neuroprotection. Neuropsychopharmacology 2008; 33: 2237-2250.
  • 47. Pizzi M., Sarnico I., Boroni F. i wsp.: Prevention of neuron and oligodendrocyte degeneration by interleukin-6 (IL-6) and IL-6 receptor/IL-6 fusion protein in organotypic hippocampal slices. Mol. Cell. Neurosci. 2004; 25: 301-311.
  • 48. Nelson T.E., Netzeband J.G., Gruol D.L.: Chronic interleukin- 6 exposure alters metabotropic glutamate receptor-activated calcium signalling in cerebellar Purkinje neurons. Eur. J. Neurosci. 2004; 20: 2387-2400.
  • 49. Conroy S., Nguyen V., Quina L. i wsp.: Interleukin-6 produces neuronal loss in developing cerebellar granule neuron cultures. J. Neuroimmunol. 2004; 155: 43-54.
  • 50. Tarkowski E., Rosengren L., Blomstrand C. i wsp.: Intrathecal release of pro- and anti-inflammatory cytokines during stroke. Clin. Exp. Immunol. 1997; 110: 492-499.
  • 51. Beridze M., Sanikidze T., Shakarishvili R. i wsp.: Selected acute phase CSF factors in ischemic stroke: findings and prognostic value. BMC Neurol. 2011; 11: 41.
  • 52. Montaner J., Rovira A., Molina C. i wsp.: Plasmatic level of neuroinflammatory markers predict the extent of diffusionweighted image lesions in hyperacute stroke. J. Cereb. Blood Flow Metab. 2003; 23: 1403-1407.
  • 53. Sun Y., Lu C.J., Lin C.H., Wen L.L.: Interleukin-1β is increased in the cerebrospinal fluid of patients with small infarcts. Eur. J. Neurol. 2009; 16: 858-863.
  • 54. Fassbender K., Rossol S., Kammer T. i wsp.: Proinflammatory cytokines in serum of patients with acute cerebral ischemia: kinetics of secretion and relation to the extent of brain damage and outcome of disease. J. Neurol. Sci. 1994; 122: 135-139.
  • 55. Tarkowski E., Rosengren L., Blomstrand C. i wsp.: Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke. Stroke 1995; 26: 1393-1398.
  • 56. Emsley H.C., Smith C.J., Gavin C.M. i wsp.: Clinical outcome following acute ischaemic stroke relates to both activation and autoregulatory inhibition of cytokine production. BMC Neurol. 2007; 7: 5.
  • 57. Waje-Andreassen U., Kråkenes J., Ulvestad E. i wsp.: IL-6: an early marker for outcome in acute ischemic stroke. Acta Neurol Scand. 2005; 111: 360-365.
  • 58. Becker K.: Inflammation and acute stroke. Curr. Opin. Neurol. 1998; 11: 45-49.
  • 59. Becker K.: Targeting the central nervous system inflammatory response in ischemic stroke. Curr. Opin. Neurol. 2001; 14: 349-353.
  • 60. Smith C., Emsley H.C., Udeh C. i wsp.: Interleukin-1 receptor antagonist reverses stroke-associated peripheral immune suppression. Cytokine 2012; 58: 384-389.
  • 61. Ormstad H., Dalsbotten H., Lund-Sorensen A. i wsp.: Serum levels of cytokines and C-reactive protein in acute ischemic stroke patients, and their relationship to stroke lateralisation, type, and infarct volume. J. Neurol. 2011; 258: 677-685.
  • 62. Weisman G., Camden J., Peterson T. i wsp.: P2 receptors for extracellular nucleotides in the central nervous system: role of P2X7 and P2Y2 receptor interactions in neuroinflammation. Mol. Neurobiol. 2012; 46: 96-113.
  • 63. Stoeckel M.E., Uhl-Bronner S., Hugel S. i wsp.: Cerebrospinal fluid-contacting neurons in the rat spinal cord, a γ-aminobutyric acidergic system expressing the P2X2 subunit of purinergic receptors, PSA-NCAM, and GAP-43 immunoreactivities: light and electron microscopic study. J. Comp. Neurol. 2003; 457: 159-174.
  • 64. Czarnecka J., Roszek K., Jabłoński A. i wsp.: Some aspects of purinergic signaling in the ventricular system of porcine brain. Acta Vet. Scand. 2011; 53: 54.
  • 65. Johansson P.A., Burnstock G., Dzięgielewska K.M. i wsp.: Expression and localization of P2 nucleotide receptor subtypes during development of the lateral ventricular choroid plexus of the rat. Eur. J. Neurosci. 2007; 25: 3319-3331.
  • 66. Kashyap R.S., Kainthla R.P., Mudaliar A.V. i wsp.: Cerebrospinal fluid adenosine deaminase activity: a complimentary tool in the early diagnosis of tuberculous meningitis. Cerebrospinal Fluid Res. 2006; 3: 5.
  • 67. Cruz Portela L.V., Oses J.P., Silveira A.L. i wsp.: Guanine and adenine nucleotidase activities in rat cerebrospinal fluid. Brain Res. 2002; 950: 74-78.
  • 68. Schutte C.M., Ungerer J.P., du Plessis H., van der Meyden C.H.: Significance of cerebrospinal fluid adenosine deaminase isoenzymes in tuberculous (TB) meningitis. J. Clin. Lab. Anal. 2001; 15: 236-238.
  • 69. Di Virgilio F.: Purinergic signalling in the immune system. A brief update. Purinergic Signal. 2007; 3: 1-3.
  • 70. Di Virgilio F., Ceruti S., Bramanti P., Abbracchio M.P.: Purinergic signalling in inflammation of the central nervous system. Trends Neurosci. 2009; 32: 79-87.
  • 71. Bours M.J., Swennen E.L., Di Virgilio F. i wsp.: Adenosine 5’-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther. 2006; 112: 358-404.
  • 72. Honda S., Sasaki Y., Ohsawa K. i wsp.: Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o- coupled P2Y receptors. J. Neurosci. 2001; 21: 1975-1982.
  • 73. Trautmann A.: Extracellular ATP in immune system: more than a just a danger signal. Sci. Signal. 2009; 2: 1-3.
  • 74. Perregaux D., Gabel C.A.: Interleukin-1β maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J. Biol. Chem. 1994; 269: 15195-15203.
  • 75. Sperlagh B., Illes P.: Purinergic modulation of microglial cell activation. Purinergic Signal. 2007; 3: 117-127.
  • 76. Chakfe Y., Seguin R., Antel J. i wsp.: ADP and AMP induce interleukin-1β release from microglial cells through activation of ATP-primed P2X7 receptor channels. J. Neurosci. 2002; 22: 3061-3069.
  • 77. Langston H., Ke Y., Gewirtz A. i wsp.: Secretion of IL-2 and IFN-γ but not IL-4 by antigen-specific T cells requires extracellular ATP. J. Immunol. 2003; 170: 2962-2970.
  • 78. Carroll W.A., Donnelly-Roberts D., Jarvis M.F.: Selective P2X7 receptor antagonists for chronic inflammation and pain. Purinergic Signal. 2009; 5: 63-73.
  • 79. John G.R., Simpson J.E., Woodroofe M.N. i wsp.: Extracellular nucleotides differentially regulate interleukin-1β signaling in primary human astrocytes: implications for inflammatory gene expression. J. Neurosci. 2001; 21: 4134-4142.
  • 80. Gabel C.A.: P2 purinergic receptor modulation of cytokine production. Purinergic Signal. 2007; 3: 27-38.
  • 81. Skaper S.D., Debetto P., Giusti P.: The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J. 2009; 24: 337-345.
  • 82. Grahames C.B, Michel A.D., Chessell I.P. i wsp.: Pharmacological characterization of ATP- and LLPS-induced IL-1β release in human monocytes. Br. J. Pharmacol. 1999; 127: 1915-1921.
  • 83. Lister M.F., Sharkey J., Sawatzky D.A. i wsp.: The role of purinergic P2X7 receptor in inflammation. J. Inflamm. (Lond.). 2007; 4: 5.
  • 84. Hughes J.P., Hatcher J.P., Chessell I.P.: The role of P2X7 in pain and inflammation. Purinergic Signal. 2007; 3: 163-169.
  • 85. Colomar A., Marty V., Médina C. i wsp.: Maturation and release of interleukin-1β by lipopolysaccharide-primed mouse Schwann cells require the stimulation of P2X7 receptors. J. Biol. Chem. 2003; 278: 30732-30740.
  • 86. Narcisse L., Scemes E., Zhao Y. i wsp.: The cytokine IL-1β transiently enhances P2X7 receptor expression and function in human astrocytes. Glia 2005; 49: 245-258.
  • 87. Yegutkin G.G.: Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim. Biophys. Acta 2008; 1783: 673-694.
  • 88. Schnurr M., Toy T., Shin A. i wsp.: Extracellular nucleotide signaling by P2 receptors inhibits IL-12 and enhances IL-23 expression in human dendritic cells: a novel role for the cAMP pathway. Blood 2005; 105: 1582-1589.
  • 89. Gessi S., Varani K., Merighi S. i wsp.: Adenosine and lymphocyte regulation. Purinergic Signal. 2007; 3: 109-116.
  • 90. Robson S.C., Sévigny J., Zimmermann H.: The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal. 2006; 2: 409-430.
  • 91. Friedle S.A., Curet M.A., Watters J.J.: Recent patents on novel P2X7 receptor antagonists and their potential for reducing central nervous system inflammation. Recent Pat. CNS Drug Discov. 2010; 5: 35-45.
  • 92. Pulte E.D., Broekman M.J., Olson K.E. i wsp.: CD39/NTPDase- 1 activity and expression in normal leukocytes. Thromb. Res. 2007; 121: 309-317.
  • 93. Dwyer K.M., Deaglio S., Gao W. i wsp.: CD39 and control of cellular immune responses. Purinergic Signal. 2007; 3: 171-180.
  • 94. Kukulski F., Komoszyński M.: E-NTPDazy – enzymy uczestniczące w procesach sygnalizacji w centralnym układzie nerwowym. Postępy Biol. Komórki 2002; 3: 449-463.
  • 95. Braun N., Lenz C., Gillardon F. i wsp.: Focal cerebral ischemia enhances glial expression of ecto-5’-nucleotidase. Brain Res. 1997; 766: 213-226.
  • 96. Haskó G., Pacher P., Vizi E.S., Illes P.: Adenosine receptor signaling in the brain immune system. Trends Pharmacol. Sci. 2005; 26: 511-516.
  • 97. Baxter A., Bent J., Bowers K. i wsp.: Hit-to-lead studies: the discovery of potent adamantane amide P2X7 receptor antagonists. Bioorg. Med. Chem. Lett. 2003; 13: 4047-4050.
  • 98. Romagnoli R., Baraldi P.G., Di Virgilio F.: Recent progress in the discovery of antagonists acting at P2X7 receptor. Expert Opin. Ther. Pat. 2005; 15: 271-287.
  • 99. Merriman G.H., Ma L., Shum P. i wsp.: Synthesis and SAR of novel 4,5-diarylimidazolines as potent P2X7 receptor antagonist. Bioorg. Med. Chem. Lett. 2005; 15: 435-438.
  • 100. Conigrave A.D., Fernando K.C., Gu B. i wsp.: P2Y11 receptor expression by human lymphocytes: evidence for two cAMP-linked purinoceptors. Eur. J. Pharmacol. 2001; 426: 157-163.
  • 101. Ecke D., Fischer B., Reiser G.: Diastereoselectivity of the P2Y11 nucleotide receptor: mutational analysis. Br. J. Pharmacol. 2008; 155: 1250-1255.
  • 102. Vitiello L., Gorini S., Rosano G., la Sala A.: Immunoregulation through extracellular nucleotides. Blood 2012; 120: 511-518.
  • 103. Marteau F., Communi D., Boeynaems J.M., Suarez Gonzalez N.: Involvement of multiple P2Y receptors and signaling pathways in the action of adenine nucleotides diphosphates on human monocyte-derived dendritic cells. J. Leukoc. Biol. 2004; 76: 796-803.
  • 104. Nowak J.Z., Zawilska J.B. (red.): Receptory i mechanizmy przekazywania sygnału. PWN, Warszawa 2004.
  • 105. Wang L., Jacobsen S.E., Bengtsson A., Erlinge D.: P2 receptor mRNA expression profiles in human lymphocytes, monocytes and CD34+ stem and progenitor cells. BMC Immunol. 2004; 5: 16.
  • 106. Inoue K.: The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol. Ther. 2006; 109: 210-226.
  • 107. Sitkovsky M.V., Ohta A.: The ‘danger’ sensors that STOP the immune response: the A2 adenosine receptors? Trends Immunol. 2005; 26: 299-304.
  • 108. Matzinger P.: The danger model: a renewed sense of self. Science 2002; 296: 301-305.
  • 109. Cieślak M., Kukulski F., Komoszyński M.: Emerging role of extracellular nucleotides and adenosine in multiple sclerosis. Purinergic Signal. 2011; 7: 393-402.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-cbaa129e-2aa8-4bf7-9ae5-1ca9fd8dd60c
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.