Journal

Article title

Authors

Content

Title variants

Languages of publication

Abstracts

Discipline

Publisher

Journal

Year

Volume

Pages

49-56

Physical description

Contributors

author

- Department of Applied Science, KIET Group of Institutions, Ghaziabad - 201206, India

author

- Department of Mathematics, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Gr. Noida - 201310, India

References

- [1] K. S. Millar. An Introduction to Fractional Calculus and Fractional Differential Equations. J Wiley and sons New York, 1993.
- [2] I. Podlubny. Fractional Differential equations. Academic Press USA, 1999.
- [3] Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations in Math Studies. North-Holland, New York, 2006.
- [4] R. Khalil, M. Al Horani, A. Yusuf and M. Sababhed. A New Definition of Fractional Derivative. Journal of Computational Applications Math. 264 (2014).
- [5] R. Khalil, M. Abu-Hammad, Conformable Fractional Heat Differential Equation. International Journal of Pure and Applied Mathematics 94 (2014) 215-217.
- [6] R. Khalil, M. Abu-Hammad, Abel’s Formula and Wronskian for Conformable Fractional Differential Equations. International Journal of Differential Equations and Applications 13 (2014) 177-183.
- [7] R. Khalil, M. Abu-Hammad, Legendre Fractional Differential Equation and Legendre Fractional Polynomials. International Journal of Applied Mathematical Research 3(3) (2014) 214-219.
- [8] Udita N. Katugampola, A New Fractional Derivative with Classical Properties. Journal of The American Mathematical Society. arXiv:1410.6535v2 [math.CA] 8 Nov 2014.
- [9] T. Abdeljawad, On Conformable Fractional Calculus. Journal of Computational and Applied Mathematics 279 (2015) 57-66.
- [10] R. Khalil, M. Abu-Hammad, Fractional Fourier Series with Applications. American Journal of Computational and Applied Mathematics 4(6) (2014) 187-191.
- [11] O. S Iyiola, E.R Nwaeze, Some new results on the conformable fractional calculus with application using D’ alembert’s approach. Progr. Frac. Diff. Appl. 2(2) (2016) 115-122
- [12] H. Batarfi, Jorge Losada, Juan J. Nieto and W. Shammakh, Three-Point Boundary Value Problems for Conformable Fractional Differential Equations. Hindawi Publishing Corporation. Journal of Functional Space 2015 (2015) 1-6.
- [13] Yucel Cenesiz, Alikurt. The Solution of Time Fractional Heat Equation With New Fractional Derivative Definition. Recent Advances in Applied Mathematic Modelling and Simulation (2015) 195-198
- [14] D. R. Anderson, D. J. Ulness, Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J. Mathematical Physics 6 (2015).
- [15] R. Hilfer. Application of fractional Calculus in Physics. World Scientific Publishing Company, Singapore (2000). ISBN 9810234570.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-cb260c82-15e4-48f2-8dae-6829953f0a5d