PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 96 | 208-216
Article title

The Lanczos method

Content
Title variants
Languages of publication
EN
Abstracts
EN
The Lanczos technique is one of the most frequently used numerical algorithms in matrix computations. We note that this procedure is one of the top 10 algorithms that exerted the greatest influence in the development and practice of science and engineering in the 20th century. Here we give an elementary exposition of this Lanczos method to solve the algebraic eigenvalue problem.
Discipline
Year
Volume
96
Pages
208-216
Physical description
Contributors
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, Col. Lindavista 07738, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, Col. Lindavista 07738, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, Col. Lindavista 07738, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, Col. Lindavista 07738, CDMX, México
References
  • [1] C. Lanczos, Applied analysis, Dover, New York (1988) Chap. 2.
  • [2] G. Nakos, D. Joyner, Linear algebra with applications, Brooks/Cole Pub., Pacific Grove, CA (1998).
  • [3] C. Lanczos, J. Res. Nat. Bur. Stand. 45(4) (1950) 255-282.
  • [4] C. Lanczos, J. Res. Nat. Bur. Stand. 49(1) (1952) 33-53.
  • [5] G. H. Golub, R. Underwood, Mathematical Software III, Ed. J. Rice, Academic Press, New York (1977) 364-377.
  • [6] V. N. Faddeeva, D. K. Faddeev, Computational methods in linear algebra, W. H. Freeman, San Francisco, USA (1966) 231-241.
  • [7] D. S. Watkins, Fundamentals of matrix computations, John Wiley & Sons, New York (2010).
  • [8] U. J. J. Leverrier, J. de Math. Pures Appl. Série 1, 5 (1840) 220-254.
  • [9] P. Horst, Ann. Math. Stat. 6 (1935) 83-84.
  • [10] H. Takeno, Tensor N. S. 3 (1954) 119-122.
  • [11] A. S. Householder, F. L. Bauer, Numerische Mathematik 1 (1959) 29-37.
  • [12] I. Guerrero-Moreno, J. López-Bonilla, J. Rivera, J. Inst. Eng. (Nepal) 8(1-2) (2011) 255-258.
  • [13] S. Bialas, M. Bialas, Bull. Polish Acad. Sci. (Technical Sci.) 56(4) (2008) 391-393.
  • [14] B. Gellai, The intrinsic nature of things: The life and science of Cornelius Lanczos, Am. Math. Soc., Providence, Rhode Island, USA (2010) Chap. 1.
  • [15] A. N. Krylov, Bull. de l’Acad. Sci. URSS 7(4) (1931) 491-539.
  • [16] L. Komzik, The Lanczos method: Evolution and application, SIAM, Philadelphia (2003) Chap. 1.
  • [17] L. Komzik, Approximation techniques for engineers, CRC/Taylor & Francis, Boca Raton, Fl, USA (2007) Chap. 10.
  • [18] H. A. van der Vorst, Computing in Sci. and Eng. 2(1) (2000) 32-37.
  • [19] Barry A. Cipra.‘The best of the 20th century: Editors name top 10 algorithms’, SIAM News 33(4) (2000) May 16.
  • [20] M. R. Hestenes, E. Stiefel, J. Res. Nat. Bur. Stand. 49(6) (1952) 409-436.
  • [21] G. Meurant, The Lanczos and conjugate gradient algorithms, SIAM, Philadelphia, USA (2006).
  • [22] R. A. Horn, Ch. R. Johnson, Matrix analysis, Cambridge University Press (1990).
  • [23] G. Cybenko, Linear algebra and its applications 88-89 (1987) 99-115.
  • [24] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford (1965) 37-38.
  • [25] D. T. Finkbeiner, Introduction to matrices and linear transformations, W. H. Freeman, San Francisco, USA (1966) pp. 171.
  • [26] B. Gelbaum, Am. Math. Monthly 90(1) (1983) 43-44.
  • [27] E. Süli, D. Mayers, An introduction to numerical analysis, Cambridge University Press (2003) Chap. 5.
  • [28] L. S. Brown, Quantum field theory, Cambridge University Press (1994) pp. 54.
  • [29] J. H. Caltenco, J. López-Bonilla, R. Peña-Rivero, Educatia Matematica 3(1-2) (2007) 107-112.
  • [30] T. L. Curtright, D. B. Fairlie, arXiv:1212.6972v1 [hep-th] 31 Dec. (2012).
  • [31] R. L. Burden, J. D. Faires, Numerical analysis, Brooks/Cole, Boston, MA, USA (2011) Chap. 7.
  • [32] J. M. Souriau, C. R. Acad. Sci. Paris 227 (1948) 1010-1011.
  • [33] J. S. Frame, Bull. Amer. Math. Soc. 55 (1949) 1045.
  • [34] D. K. Faddeev, I. S. Sominsky, Collection of problems on higher algebra, Moscow (1949).
  • [35] A. S. Householder, The theory of matrices in numerical analysis, Blaisdell, New York (1964) pp. 172.
  • [36] J. C. Gower, Linear algebra and its applications 31(1) (1980) 706-709.
  • [37] S. Barnett, SIAM J. Matrix Anal. Appl. 10(4) (1989) 551-556.
  • [38] G. Helmberg, P. Wagner, G. Veltkamp, Linear algebra and its applications 185 (1993) 219-233.
  • [39] Shui-Hung Hou, Electronic Proc. of Asia Tech. Conf. in Maths. (1998).
  • [40] Shui-Hung Hou, SIAM Rev. 40(3) (1998) 706-709.
  • [41] B. Hanzon, R. Peeters, Computer algebra in systems theory, Dutch Inst. of Systems and Control, Course Program (1999-2000).
  • [42] J. López-Bonilla, J. Morales, G. Ovando, E. Ramírez, Proc. Pakistan Acad. Sci. 43(1) (2006) 47-50.
  • [43] A. Domínguez, J. López-Bonilla, S. Vidal-Beltrán, Prespacetime Journal 9(2) (2018) 137-141.
  • [44] L. J. Gerstein, Am. Math. Monthly 95(10) (1988) 950-952.
  • [45] A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, Springer, Berlin (2007) Chap. 3.
  • [46] B. N. Parlett, The symmetric eigenvalue problem, SIAM, Philadelphia, USA (1998) Chap. 13.
  • [47] C. Brezinski, L. Wuytack (Eds.), Numerical analysis: Historical developments in the 20th century, North-Holland, Amsterdam (2001).
  • [48] A. Hadjidimos, H. van der Vorst, P. van Dooren, Numerical analysis: Linear algebra, North-Holland, Amsterdam (2001).
  • [49] B. Gellai, Cornelius Lanczos, in ‘Physicists of Ireland’, (Eds.) M. McCartney, A. Whitaker; Institute of Physics Pub., Bristol & Philadelphia (2003) 198-207.
  • [50] C. Lanczos, Am. Math. Monthly 65(9) (1958) 665-679.
  • [51] C. Lanczos, Linear differential operators, Dover, New York (1997) Chap. 3.
  • [52] I. Guerrero-Moreno, J. López-Bonilla, L. Rosales-Roldán, The Sci. Tech. J. of Science & Technology (India), Special Issue (2012) 111-114.
  • [53] G. Bahadur Thapa, J. López-Bonilla, P. Lam-Estrada, World Scientific News 95 (2018) 100-110.
Document Type
short_communication
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-ca65a0ca-b6fe-4954-9f6a-42c55a29e987
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.