PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 37 | 1 | 15-55
Article title

Melatonina, wielofunkcyjna cząsteczka sygnałowa w organizmie ssaka: miejsca biosyntezy, funkcje, mechanizmy działania

Content
Title variants
EN
Melatonin, multifunctional signal molecule in mammals: origin, functions, mechanisms of action
Languages of publication
PL
Abstracts
EN
Methoxyindole hormone - melatonin (MEL) is produced and released by the mammalian pineal gland in a circadian rhythm exhibiting a low level during the day and an elevation at night, strictly dependent on the environmental lighting conditions. The main MEL function is, therefore, to synchronize diurnal rhythms of several physiological processes and for the diurnally active species (including humans) it gives information on the beginning of sleepiness. For the nocturnal species, however, elevated MEL level serves as a signal to start locomotor and feeding activity. In seasonal breeders the pineal gland function synchronizes the time of gonadal development and sexual activity with the external conditions in a way that progeny appears in the optimal climatic moment. MEL is produced also extrapineally, e.g. in the gastro-intestinal tract and bone marrow, where it exerts a protective effect due to its activity as an antioxidant and a potent free radical scavenger. Being both lipid and water soluble, MEL is able to cross biological barriers and, therefore, it uses several cellular mechanism to exert its physiological activity, including membrane and nuclear receptors, proteins of the cytoskeleton, mitochondrial membrane stabilization. MEL is also involved in immunomodulation, the effects are different and dependent on numerous factors, nevertheless, its immunostimulatory activity is generally well accepted. Additionally, activated immune cells are able to produce MEL acting in an auto- and paracrine way. As an efficient antioxidant MEL exerts the anti-inflammatory effect, which, reciprocally, modulates the pineal gland biosynthetic activity adapting it to temporary endogenous conditions.
PL
Szyszynka ssaków produkuje i wydziela do krwi melatoninę (MEL) w rytmie dobowym, którego cechą charakterystyczną jest wysoki poziom w nocy niski w dzień, a czas nocnej syntezy zaleŜy od warunków świetlnych otoczenia. Dzięki temu MEL synchronizuje wiele procesów fizjologicznych przebiegających rytmicznie, a jako chemiczny sygnał ciemności przekazuje gatunkom o aktywności dziennej (w tym ludziom) informację o rozpoczęciu pory snu. Gatunki aktywne w nocy inaczej interpretują sygnał melatoninowy. Dla zwierząt rozmnaŜających się sezonowo informacja niesiona przez MEL stanowi sygnał do takiej synchronizacji funkcji rozrodczych z warunkami klimatycznymi, aby potomstwo mogło pojawić się w optymalnym momencie. Melatonina powstaje takŜe pozaszyszynkowo, np. w układzie pokarmowym, gdzie pełni funkcje ochronne, związane z aktywnym zmiataniem wolnych rodników i właściwościami antyoksydacyjnymi. Jako cząsteczka amfifilowa moŜe przekraczać bariery biologiczne, dlatego swoje efekty moŜe wywierać za pośrednictwem wielu róŜnych mechanizmów takich jak: wiązanie z receptorami błonowymi i jądrowymi, białkami cytozolowymi, stabilizowanie błony mitochondrialnej. MEL wykazuje działanie immunomodulacyjne, zaleŜne od wielu czynników, choć zasadniczo wydaje się być czynnikiem wspomagającym odporność, a aktywowane komórki odpornościowe takŜe syntetyzują MEL działającą auto- i parakrynowo. Dzięki właściwościom antyoksydacyjnym pełni istotną rolę przeciwzapalną, z kolei toczący się proces zapalny moduluje aktywność biosyntetyczną szyszynki, dostosowując je do aktualnych warunków w organizmie.
Discipline
Year
Volume
37
Issue
1
Pages
15-55
Physical description
References
  • Pandi-Perumal SR, Trakht I, Srinivasan V, Spence DW, Meastroni GJM, Zisapel N i wsp. Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways. Prog Neurobiol. 2008; 85:335-353.
  • http://www.ebrs.info; Newsletter 49, December 2007.
  • Klein DC. Arylalkylamine N-acetyltransferase: “the timezyme”. J Biol Chem. 2007; 282:4233-4237.
  • Pandi-Perumal SR, Srinivasan V, Maestroni GJM, Cardinali DP, Poeggeler B, Hardeland R. Melatonin: Natures’s most versatile biological signal? FEBS J. 2006; 273:2813-2838.
  • Paakkonen T, Makinen TM, Leppaluoto J, Vakkuri O, Rintamaki H, Palinkas LA i wsp. Urinary melatonin: a noninvasive method to follow human pineal function as studied in three experimental conditions. J Pineal Res. 2006; 40:110-115.
  • Hardeland R. Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine. 2005; 27:119-130.
  • Conti A, Tettamanti C, Singaravel M, Haldar C, Pandi-Perumal RS, Maestroni GJM. Melatonin: an ubiquitous and evolutionary hormone. W: Treatise on pineal gland and melatonin. Haldar C, Singaravel M, Maitra SK. (red), Science Publishers, Inc., Enfield (NH) – Plymouth, 2002:105-143.
  • Bubenik GA, Brown GM, Grota LG. Differential localization of N-acetylated indolealkylamines in CNS and the Harderain gland using immunohistology. Brain Res. 1976; 118:417-427.
  • Champier J, Claustrat B, Besancon R, Eymin C, Killer C, Juvet A i wsp. Evidence for tryptophan hydroxylase and hydroxyl-indol-O-methyl-transferase mRNAs in human blood platelets. Life Sci. 1997; 60:2191-2197.
  • Tosini G, Menaker M. The clock in the mouse retina: melatonin synthesis and photoreceptor degeneration. Brain Res. 1998; 789:221-228.
  • Conti A, Conconi S, Hertens E, Skwarlo-Sonta K, Markowska M, Maestroni GJM. Evidence for melatonin synthesis in mouse and human bone marrow cells. J Pineal Res. 2000; 28:193-202.
  • Carrillo-Vico A, Lardone PJ, Fernandez-Santos JM, Martin-Lacave I, Calvo JR, Karasek M i wsp. Human lymphocyte-synthesized melatonin is involved in the regulation of the interleukin-2/interleukin-2 receptor system. J Clin Endocrinol Metab. 2005; 90:992-1000.
  • Lerner AB, Case JD, Takahashi Y. Isolation of melatonin and 5-methoxyindole-3 acetic acid from bovine pineal glands. J Biol Chem. 1960; 235:1992-1997.
  • Karasek M. Szyszynka i melatonina. Wydawnictwo Naukowe PWN, Warszawa-Łódź, 1997.
  • Collin JP, Voisin P, Falcon J, Faure JP, Brisson P, Defaye JR. Pineal transducers in the course of evolution: molecular organization, rhythmic metabolic activity and role. Arch Histol Cytol. 1989; 52:441-449.
  • Takahashi JS, Murakami N, Nikaido SS, Pratt BL, Robertson LM. The avian pineal, a vertebrate model system of the circadian oscillator: cellular regulation of circadian rhythms by light, second messengers and macromolecular synthesis. Recent Prog Horm Res. 1989; 45:279-352.
  • Erren TC, Reiter RJ. Light hygiene: Time to make preventive use of insights – old and new – into the nexus of the drug light, melatonin, clocks, chronodisruption and public health. Med Hypoth. 2009; 73:537-541.
  • Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002; 295:1070-1073.
  • Kumbalasiri T, Provencio I. Review: Melanopsin and other novel mammalian opsins. Exp Eye Res. 2005; 81:368-375.
  • Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev. 2005; 9:11-24.
  • Slominski A, Fischer TW, Zmijewski MA, Wortsman J, Semak I, Zbytek B i wsp. On the role of melatonin in skin physiology and pathology. Endocrine. 2005; 27:137-148.
  • Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res. 2007; 42:28-42.
  • Bubenik GA. Gastrointestinal melatonin – 30 years of research. W: Experimental endocrinology and reproductive biology. Haldar C, Singaravel M, Pandi-Perumal SR, Cardinali DP (red.), Science Publishers, Enfield, NH, USA, 2008:17-35.
  • Pontes GH, Cardoso EC, Carneiro-Sampaio MMS, Markus RP. Injury switches melatonin production source from endocrine (pineal) to paracrine (phagocytes) -melatonin in human colostrums and colostrums phagocytes. J Pineal Res. 2006; 41:136-141.
  • Karasek M, Winczyk K. Melatonin in humans. J Physiol Pharmacol. 2006: 57 (Suppl 5):19-39.
  • Karasek M. Does melatonin play a role in aging processes? J Physiol Pharmacol. 2007: 58 (Suppl 6):105-113.
  • Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005; 27:101-110.
  • Becker-Andre M, Wiesenberg I, Schaeren-Wiemers N, Andre E, Missbach M, Sauart JH i wsp. Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem. 1994; 269:28531-28534.
  • Benitez-King G. Melatonin as cytoskeletal modulator: implications for cell physiology and disease. J Pineal Res. 2006; 40:1-9.
  • 30 Andrabi SA, Sayeed I, Siemen D, Wolf G, Horn TF. Direct inhibition of the mitochondria permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J. 2004; express article 10.1096/fj.03-1031fje.
  • Reiter RJ, Tan DX, Terron MP, Flores LJ, Czarnocki Z. Review: Melatonin and its metabolites: new finding regarding their production and their radical scavenging actions. Acta Biochim Pol. 2007; 54:1-9.
  • Nosjean O, Ferro M, Coge F, Beauverger P, Henlin JM, Lefoulon F i wsp. Identification of the melatonin-binding site MT3 as the quinine reductase 2. J Biol Chem. 2000; 275:31311-31317.
  • Boutin JA, Audinot V, Ferry G, Delagrange P. Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci. 2005; 26:412-419.
  • Turjanski AG, Estrin DA, Rosenstein RE, McCormick JE, Martin SR, Pastore A i wsp. NMR and molecular dynamic studies of the interaction of melatonin with calmodulin. Protein Sci. 2004; 13:2925-2938.
  • Macias M, Escames G, Leon J, Coto A, Sbihi Y, Osuna A i wsp. Calreticulin-melatonin. An unexpected relationship. Eur J Biochem. 2003; 270:832-840.
  • Guerrero JM, Reiter RJ. Melatonin-immune system relationships. Curr Topic Med Chem. 2002; 2:167-179.
  • Steinhilber D, Brungs M, Werz O, Wiesenberg I, Danielsson C, Kalen JP i wsp. The nuclear receptor for melatonin represses 5-lipoxygenase gene expression in human B lymphocytes. J Biol Chem. 1995; 270:7037-7040.
  • Lardone PJ, Carillo-Vico A, Molinero P, Rubio A, Guerrero JM. A novel interplay between membrane and nuclear melatonin receptors in human lymphocytes: significance in IL-2 production. Cell Mol Life Sci. 2009; 66:516 525.
  • Naji L, Carillo-Vico A, Guerrero JM, Calvo JR. Expression of membrane and nuclear melatonin receptors in mouse peripheral organs. Life Sci. 2004; 74:2227-2236.
  • Challet E. Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology. 2007; 148:5648-5655.
  • Reiter RJ. The melatonin rhythm: both a clock and a calendar. Experientia. 1993; 49:654-664.
  • Lincoln GA, Anderson H, Loudon A. Review: Clock genes in calendar cell as the basis of annual timekeeping in mammals – a unifying hypothesis. J Endocrinol. 2003; 179:1-13.
  • Misztal T, Romanowicz K. Effective stimulation of daily LH secretion by the combined treatment with melatonin and naloxone in luteal-phase ewes. Acta Neurobiol Exp. 2005; 65: 1-9.
  • Zawilska JB, Skene DJ, Arendt J. Review: Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Reports. 2009; 61:383 410.
  • Stevens RG, Blask DE, Brainard GC, Hansen J, Lockley SW, Provencio I i wsp. Meeting report: The role of environmental lighting and circadian disruption in cancer and other diseases. Environ Health Perspect. 2007; 115:1357-1362.
  • Winczyk K, Fuss-Chmielewska J, Lawnicka H, Pawlikowski M, Karasek M. Luzindole but not 4-phenyl-2-propionamidotetralin (4P-PDOT) diminishes the inhibitory effect of melatonin on murine Colon 38 cancer growth in vitro. Neuroendocrinol Lett. 2009: 30:657-662.
  • Jaworek J, Nawrot-Porabka K, Leja –Szpak A, Bonior J, Szklarczyk J, Kot M i wsp. Melatonin as modulator of pancreatic enzyme secretion and pancreato-protector, J Physiol Pharmacol. 2007; 58 (Suppl 6):65-80.
  • Jaworek J, Brzozowski T, Konturek SJ. Mini review: Melatonin as an organo-protector in the stomach and the pancreas. J Pineal Res. 2005; 38:73-83.
  • Skwarło-Sońta K. Melatonin in immunity: comparative aspects. Neuroendocrinol Lett. 2002; 23 (Suppl.1):61-66.
  • Maestroni GJM, Conti A, Covacci V. Melatonin-induced immuno-opioids: funda-mentals and clinical perspectives. Adv Pineal Res. 1994; 7:73-81.
  • Skwarło-Sońta K, Majewski P, Markowska M, Obłap R, Olszańska B. Bidirectional communication between the pineal gland and immune system. Can J Physiol Pharmacol. 2003; 81:342-348.
  • Guerrero JM, Reiter RJ. Melatonin-immune system relationships. Curr Top Med Chem. 2002; 2:167-179.
  • Carrillo-Vico A, Guerrero JM, Lardone JL, Reiter RJ. A review of the multiple actions of melatonin on the immune system. Endocrine. 2005; 27:189-200.
  • Haldar C, Singh S, Rai S, Skwarło-Sońta K, Pawlak J, Singaravel M. Melatonin and immunomodulation: Involvement of the neuro-endocrine network. W: Experimental endocrinology and reproductive biology. Haldar C, Singaravel M, Pandi-Perumal SR, Cardinali DP. (red.) Science Publishers, Enfield, NH, USA, 2008; 297-314.
  • Finocchiaro LM, Nahmod VE, Launay JM. Melatonin biosynthesis and metabolism in peripheral blood mononuclear leucocytes. Biochem J. 1991; 280: 727-731.
  • Cos S, Gonzalez A, Martinez-Campa C, Mediavill MD, Alonso-Gonzalez C, Sanchez-Barcelo EJ. Estrogen-signaling pathway: a link between breast cancer and melatonin oncostatic actions. Cancer Detect Prev. 2006; 30:118-128.
  • Danielczyk K, Dzięgiel P. Receptory melatoninowe MT1 oraz ich rola w onkostatycznym działaniu melatoniny. Postepy Hig Med Dosw (online). 2009; 63:425-434.
  • Jung-Hynes B, Reiter RJ, Ahmad N. Review: Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer. J Pineal Res. 2010; 48:9 19.
  • Lotufo CMC, Yamashita CE, Farsky SHP, Markus RP. Melatonin effect on endothelial cells reduces vascular permeability increase induced by leukotriene B4. Eur J Pharmacol. 2006; 534:258-263.
  • Markus RP, Ferreira ZS, Fernandes PACM , Cecon E. The immune-pineal axis: A shuttle between endocrine and paracrine melatonin sources. Neuroimmuno-modulation. 2007; 14:126-133.
  • Cuoto-Moraes R, Palermo-Neto J, Markus RP. The immune-pineal axis. Stress as a modulator of pineal gland function. Neuroimmunomodulation: Ann NY Acad Sci. 2009; 1153:193-202.
  • Fernandes PACM, Cecon E, Markus RP, Ferreira ZS. Effect of TNF-α on the melatonin synthetic pathway in the rat pineal gland: basis for a “feedback” of the immune response on cardiac timing. J Pineal Res. 2006; 41:344-350.
  • Ferreira ZS, Fernandes PACM, Duma D, Assreuy J, Avellar MCW, Markus RP. Corticosterone modulates noradrenaline-induced melatonin synthesis through inhibition of nuclear factor κB. J Pineal Res. 2005; 38:182-188.
Document Type
paper
Publication order reference
YADDA identifier
bwmeta1.element.psjd-ca176d82-8046-4878-949a-693f1b3bda46
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.