PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 68 | 6 | 430–448
Article title

Pathogenesis, prevention and treatment of peripheral artery disease

Content
Title variants
PL
Patogeneza, profilaktyka i leczenie choroby tętnic obwodowych
Languages of publication
EN
Abstracts
EN
The aim of the article is to present an overview of recent findings on the etiology, pathogenesis and methods of diagnosis and treatment of atherosclerosis and a chosen specific syndrome caused by this polyvascular disease. The author considers pathogenic mechanisms like cellular dysfunction, inflammation and coagulation disorders and also inquires about the primary cause of endothelium damage. The links between the state of vascular endothelium and lifestyle are emphasized. The author notes that the primary causes of endothelial damage should be traced, as originally suggested many years ago to such factors as heightened anger, hostility, aggression, impulsiveness and depression. The author points out that lipid abnormalities are associated with the occurrence of vascular endothelial inflammation. It is highlighted that even though the family predisposition to the disease has long been known – genetic studies have failed to identify critical gene variants and that the notion of so-called "missing heredity" should be noted. The author also accentuates that determining so-called classical risk factors does not enable reliable prediction of the disease and therefore many researchers are looking for so-called novel biomarkers. The performed discussion on the specific features of peripheral arterial disease makes physicians aware how to combine treatment of the generalized disease with proceedings indicated for particular local lesions. Apart from pharmacological and surgical procedures, the recent attempts to stimulate the development of collateral vessels are interesting. The considerations and conclusions presented in this overview seem of great importance for the prevention and treatment of peripheral artery disease.
PL
Autor dokonuje przeglądu najnowszych ustaleń dotyczących etiologii, patogenezy oraz rozpoznawania i leczenia miażdżycy, a także specyfiki obranego wtórnego zespołu. Prócz przypomnienia istoty takich mechanizmów patogenetycznych, jak zaburzenia funkcji makrofagów, procesy zapalne i zaburzenia krzepnięcia rozważane są możliwe pierwotne przyczyny uszkodzenia śródbłonka naczyń. Podkreśla się powiązania pomiędzy stanem śródbłonka naczyniowego a stylem życia. Autor zwraca uwagę, że poszukując pierwotnych przyczyn uszkodzenia śródbłonka należy rozważyć zaproponowane już wiele lat temu czynniki osobowościowe i behawioralne, takie jak wrogość, agresywność, impulsywność i depresja. Autor wskazuje, że zaburzenia lipidowe są powiązane z występowaniem zapalenia śródbłonka. Podkreśla także, że choć znana jest już od dawna predyspozycja rodzina, to dotychczasowe badania genetyczne nie określiły krytycznych chorobotwórczych wariantów genów, co skłoniło do sformułowania pojęcia tzw. brakujących wyznaczników dziedziczności. Podkreślono także, że wykazanie tzw. klasycznych czynników ryzyka nie umożliwia precyzyjnego prognozowania wystąpienia choroby, stąd współczesne poszukiwania tzw. nowych biomarkerów miażdżycy. Przedstawienie specyfiki choroby tętnic obwodowych ułatwia autorowi uświadomienie klinicystom sposobów łączenia zwalczania uogólnionych objawów choroby z leczeniem miejscowych, zlokalizowanych zmian naczyniowych. Oprócz farmakologicznych i chirurgicznych sposobów leczenia autor omawia także rozpoczęte niedawno próby stymulowania rozwoju naczyń obocznych. Przedstawione rozważania i wnioski mają duże znaczenie dla procesu dydaktycznego dotyczącego tego najbardziej rozpowszechnionego schorzenia.
Discipline
Publisher

Year
Volume
68
Issue
6
Pages
430–448
Physical description
Contributors
  • Institute of Occupational Medicine and Environmental Health ul. Kościelna 13 41-200 Sosnowiec tel. +48 32 266 08 85, 605 044 609, e-mail: andrzejbrodziak@wp.pl
References
  • 1. Longo D. Fauci A.S., Kasper D.L., Hausner S.L., Jameson J.L., Loscalzo I. Harrison's principles of internal diseases. The McGraw-Hill companies, Inc., New York 2012.
  • 2. George S.J., Johnson J. Editors Atherosclerosis. Molecular and cellular mechanisms. Wiley-VCH Verlag GmbH&Co., KGaA Weinheim 2010.
  • 3. Chilton R.J. Pathophysiology of coronary heart disease: a brief review. J. Am. Osteopath. Assoc. 2004; 104(Suppl 9): S5–8.
  • 4. Yakubov S. Polyvascular atherosclerotic disease: recognizing the risks and managing the syndrome. Curr. Med. Res. Opin. 2009; 25: 2631–2641.
  • 5. Cournot M., Cambou J.P., Ferrières J., Grenier O., Herrmann M.A., Cantet C., Leizorovicz A. Management of the cardiology patient with polyvascular disease: PRISMA study. Arch Mal Coeur Vaiss. 2004; 97: 841–848.
  • 6. Gutstein W.H. The central nervous system and atherogenesis: endothelial injury. Atherosclerosis 1988; 70: 145–154.
  • 7. Hillbrand M., Waite B.M., Rosenstein M., Harackiewicz D., Lingswiler V.M., Stehney M. Serum cholesterol concentrations and non-physical aggression in healthy adults. J. Behav. Med. 2005; 28: 295–299.
  • 8. Williams K.J., Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 1995; 15: 551–561.
  • 9. Ross R., Glomset J., Harker L. Response to injury and atherogenesis. Am. J. Pathol. 1977; 86: 675–684.
  • 10. Wilson P.W., D'Agostino R.B., Levy D., Belanger A.M., Silbershatz H., Kannel W.B. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97: 1837–1847.
  • 11. D'Agostino R.B. Sr., Vasan R.S., Pencina M.J. et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circula-tion 2008; 117: 743–753.
  • 12. Versteylen M.O., Joosen I.A., Shaw L.J., Narula J., Hofstra L. Compari-son of Framingham, PROCAM, SCORE, and Diamond Forrester to predict coronary atherosclerosis and cardiovascular events. J. Nucl. Cardiol. 2011; 18: 904–911.
  • 13. Cunningham M.A., Swanson V., O'Carroll R.E., Holdsworth R.J. Increasing walking in patients with intermittent claudication: Protocol for a randomised controlled trial, BMC Cardiovasc. Disord. 2010; 10: 49.
  • 14. Cunningham M.A., Swanson V., O'Carroll R.E., Holdsworth R.J. Randomized clinical trial of a brief psychological intervention to increase walking in patients with intermittent claudication. Br. J. Surg. 2012; 99: 49–56.
  • 15. Ram R.V., Trivedi A.V. Behavioral risk factors of coronary artery disease: A paired matched case control study. J. Cardiovasc. Dis. Res. 2012; 3: 212–217.
  • 16. Rose M.I. Type A behaviour pattern: a concept revisited. CMAJ 1987; 136: 345–350.
  • 17. Gerevich J., Bácskai E., Czobor P. The generalizability of the Buss-Perry Aggression Questionnaire. Int. J. Methods. Psychiatr. Res. 2007; 16: 124–136.
  • 18. Ramírez J.M., Andreu J.M. Aggression, and some related psychological constructs (anger, hostility, and impulsivity); some comments from a research project. Neurosci. Biobehav. Rev. 2006; 30: 276–291.
  • 19. Serrano C.V., Setani K.T., Sakamoto E., Andrei A.M., Fraguas R. Association between depression and development of coronary artery disease: pathophysiologic and diagnostic implications. Vasc. Health Risk Manag. 2011; 7: 159–164.
  • 20. Rallidis L.S., Varounis C., Sourides V. et al. Mild depression versus C-reactive protein as a predictor of cardiovascular death: a three year follow-up of patients with stable coronary artery disease. Curr. Med. Res. Opin. 2011; 27: 1407–1413.
  • 21. Wang J., Widlansky M.E. Lifestyle choices and endothelial function: risk and relevance. Curr. Vasc. Pharmacol. 2009; 7: 209–224
  • 22. Papageorgiou N., Tousoulis D., Androulakis E. et al. Lifestyle factors and endothelial function. Curr. Vasc. Pharmacol. 2012; 10: 94–106.
  • 23. Curtis B.M. Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clin. Proc. 2002; 77: 45–54.
  • 24. Szabo S., Tache Y., Somogyi A. The legacy of Hans Selye and the origins of stress research: a retrospective 75 years after his landmark brief "letter" to the editor# of nature. Stress 2012; 15: 472–478.
  • 25. Goldstein D.S. Adrenal responses to stress. Cell. Mol. Neurobiol. 2010; 30: 1433–1440.
  • 26. Trigo M., Silva D., Rocha E. Psychosocial risk factors in coronary heart disease: Beyond type A behavior. Rev. Port Cardiol. 2005; 24: 261–281
  • 27. Friedman M., Rosenman R. Type A behavior and your heart. Knopf, New York 1974.
  • 28. Friedman M. Type A behavior: Its diagnosis and treatment. Plenum Press, New York 1996.
  • 29. In search of coronaryprone behavior: Beyond type A. Eds. A. Siegman, T. Dembroski, Lawrence Erlbaum Associates, Hillsdale 1989.
  • 30. Marenberg M.E., Risch N., Berkman L.F., Floderus B., de Faire U. Genetic susceptibility to death from coronary heart disease in a study of twins. N. Engl. J. Med. 1994; 330: 1041–1046.
  • 31. Scheuner M.T. Genetic predisposition to coronary artery disease. Curr. Opin. Cardiol. 2001; 16: 251–260.
  • 32. Scheuner M.T. Genetic evaluation for coronary artery disease. Genet. Med. 2003; 5: 269–285.
  • 33. Scheuner M.T. Clinical application of genetic risk assessment strategies for coronary artery disease: genotypes, phenotypes, and family history. Prim. Care 2004; 31: 711–737
  • 34. Pajukanta P., Cargill M., Viitanen L. et al. Two loci on chromosomes 2 and X for premature coronary heart disease identified in early- and late-settlement populations of Finland. Am. J. Hum. Genet. 2000; 67: 1481–1493.
  • 35. Johansen C.T., Hegele R.A. Predictive genetic testing for coronary artery disease. Crit. Rev. Clin. Lab. Sci. 2009; 46: 343–360.
  • 36. Hurrell C., Wietlisbach V., Jotterand V. et al. High prevalence of major cardiovascular risk factors in first-degree relatives of individuals with familial premature coronary artery disease-the GENECARD project. Atherosclerosis 2007; 194: 253–264.
  • 37. Van daele C.M., De Meyer T., De Buyzere M.L. et al. Addition of a novel, protective family history category allows better profiling of cardiovascular risk and atherosclerotic burden in the general population. The Asklepios Study. PLoS One 2013; 8(5): e63185.
  • 38. Liu H., Liu W., Liao Y. et al. CADgene: a comprehensive database for coronary artery disease genes. Nucleic. Acids. Res. 2011; 39(Database issue): D991–996.
  • 39. Preuss M., König I.R., Thompson J.R. et al. Design of the Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIo-GRAM) Study: A Genome-wide association meta-analysis involving more than 22 000 cases and 60 000 controls. Circ. Cardiovasc. Genet. 2010; 3: 475–483.
  • 40. Hernesniemi J.A., Seppälä I., Lyytikäinen L.P. et. al. Genetic profiling using genome-wide significant coronary artery disease risk variants does not improve the prediction of subclinical atherosclerosis: the Cardiovascular Risk in Young Finns Study, the Bogalusa Heart Study and the Health 2000 Surveya meta-analysis of three independent studies. PLoS One 2012; 7(1): e28931.
  • 41. Bis J.C., Kavousi M., Franceschini N. et. al. Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque. Nat. Genet. 2011; 43: 940–947.
  • 42. Padmanabhan S., Hastie C., Prabhakaran D., Dominczak A.F. Genomic approaches to coronary artery disease. Indian J. Med. Res. 2010; 132: 567–578.
  • 43. Pranavchand R., Reddy B.M. Current status of understanding of the genetic etiology of coronary heart disease. J. Postgrad. Med. 2013; 59: 30–41.
  • 44. Roberts R., Chen L., Wells G.A., Stewart A.F. Recent success in the discovery of coronary artery disease genes. Can. J. Physiol. Pharmacol. 2011; 89: 609–615.
  • 45. Marian A.J. The enigma of genetics etiology of atherosclerosis in the post-GWAS era. Curr. Atheroscler. Rep. 2012; 14: 295–299.
  • 46. Marian A.J. Elements of 'missing heritability'. Curr. Opin. Cardiol. 2012; 27: 197–201.
  • 47. Kaprio J. Twins and the mystery of missing heritability: the contribu-tion of gene-environment interactions. J. Intern. Med. 2012; 272: 440–448.
  • 48. Eichler E.E., Flint J., Gibson G. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 2010; 11: 446–450.
  • 49. Keller M.F., Saad M., Bras J. et. al. Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease. Hum. Mol. Genet. 2012; 21: 4996–5009.
  • 50. Jeemon P., Pettigrew K., Sainsbury C., Prabhakaran D., Padmanabhan S. Implications of discoveries from genome-wide association studies in current cardiovascular practice. World J. Cardiol. 2011; 3: 230–247.
  • 51. Greenland P., Knoll M.D., Stamler J. et al. Major risk factors as anteced-ents of fatal and nonfatal coronary heart disease events. JAMA 2003; 290: 891–897.
  • 52. Khot U.N., Khot M.B., Bajzer C.T. et al. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA 2003; 290: 898–904.
  • 53. Montgomery J.E., Brown J.R. Metabolic biomarkers for predicting cardiovascular disease. Vasc. Health Risk. Manag. 2013; 9: 37–45.
  • 54. Stampfer M.J., Ridker P.M., Dzau V.J. Risk factor criteria. Circulation. 2004; 109(25 Suppl 1): IV3–5.
  • 55. Garg A. What is the role of alternative biomarkers for coronary heart disease? Clin. Endocrinol. 2011; 75: 289–293
  • 56. Chironi G. New biomarkers for cardiovascular risk evaluation. Rev. Prat. 2012; 62: 783–285.
  • 57. Ge Y., Wang T.J. Identifying novel biomarkers for cardiovascular disease risk prediction. J. Intern. Med. 2012; 272: 430–439.
  • 58. Gilstrap L.G., Wang T.J. Biomarkers and cardiovascular risk assessment for primary prevention: an update. Clin. Chem. 2012; 58: 72–82.
  • 59. Wang T.J., Gona P., Larson M.G. et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N. Engl. J. Med. 2006; 355: 2631–2639.
  • 60. Zwaka T.P., Hombach V., Torzewski J. C-reactive protein-mediated low density lipoprotein uptake by macrophages: implications for atherosclerosis. Circulation 2001; 103: 1194–1197.
  • 61. Bassuk S.S., Rifai N., Ridker P.M. High-sensitivity C-reactive protein: clinical importance. Curr. Probl. Cardiol. 2004; 29: 439–493.
  • 62. Buckley D.I., Fu R., Freeman M., Rogers K., Helfand M. C-reactive protein as a risk factor for coronary heart disease: a systematic review and meta-analyses for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2009; 151: 483–495.
  • 63. Pradhan A.D., Manson J.E., Rossouw J.E. et al. Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease: prospective analysis from the Women’s Health Initiative observational study. JAMA 2002; 288: 980–987.
  • 64. Ridker P.M., Danielson E., Fonseca F.A. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 2008; 359: 2195–2207.
  • 65. Hakkinen T., Luoma J.S., Hiltunen M.O. et al. Lipoprotein-associated phospholipase A(2), platelet-activating factor acetylhydrolase, is expressed by macrophages in human and rabbit atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 1999; 19: 2909–2917
  • 66. Packard C.J., O'Reilly D.S., Caslake M.J. et al. Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N. Engl. J. Med. 2000; 343: 1148–1155.
  • 67. Ballantyne C.M., Hoogeveen R.C., Bang H. et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Ather-osclerosis Risk in Communities (ARIC) study. Circulation 2004; 109: 837–842.
  • 68. Zalewski A., Macphee C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler. Thromb. Vasc. Biol. 2005; 25: 923–931.
  • 69. McConnell J.P., Hoefner D.M. Lipoprotein-associated phospholipase A2. Clin. Lab. Med. 2006; 26: 679–697.
  • 70. O'Donoghue M., Morrow D.A., Sabatine M.S. et al. Lipoprotein-associated phospholipase A2 and its association with cardiovascular outcomes in patients with acute coronary syndromes in the PROVE IT-TIMI 22 (PRavastatin Or atorVastatin Evaluation and Infection Therapy-Thrombolysis In Myocardial Infarction) trial. Circulation 2006; 113: 1745–1752.
  • 71. Anderson J.L. Lipoprotein-associated phospholipase A2: an inde-pendent predictor of coronary artery disease events in primary and secondary prevention. Am. J. Cardiol. 2008; 101: 23F–33F.
  • 72. Guthikonda S., Haynes W.G. Homocysteine: role and implications in atherosclerosis. Curr. Atheroscler. Rep. 2006; 8: 100–106.
  • 73. Martín-Herrero F., Martín-Moreiras J., Pabón P. et al. Homocysteine and outcome in young patients with acute coronary syndromes. Int. J. Cardiol. 2007; 118: 183–188.
  • 74. Humphrey L.L., Fu R., Rogers K., Freeman M., Helfand M. Homocysteine level and coronary heart disease incidence: a systematic review and meta-analysis. Mayo Clin. Proc. 2008; 83: 1203–1212.
  • 75. Sen S., Reddy P.L., Grewal R.P., Busby M., Chang P., Hinderliter A. Hyperhomocysteinemia is Associated with Aortic Atheroma Progression in Stroke/TIA Patients. Front. Neurol. 2010; 1: 131.
  • 76. Kosar F., Sincer I., Aksoy Y., Ozerol I. Elevated plasma homocysteine levels in patients with isolated coronary artery ectasia. Coron. Artery Dis. 2006; 17: 23–27.
  • 77. Asfar S., Safar H.A. Homocysteine levels and peripheral arterial occlu-sive disease: a prospective cohort study and review of the literature. J. Cardiovasc. Surg. (Torino) 2007; 48: 601–605.
  • 78. Aksoy M., Basar Y., Salmayenli N. et al. Hyperhomocysteinemia in patients with arterial occlusive disease. Surg. Today 2006; 36: 327–331.
  • 79. Zhou J., Austin R.C. Contributions of hyperhomocysteinemia to athero-sclerosis: Causal relationship and potential mechanisms. Biofactors 2009; 35: 120–129.
  • 80. Ebashi S. Third component participating in the superprecipitation of ‘natural actomyosin’. Nature 1963; 200: 1010.
  • 81. Rybakova I.N., Greaser M.L., Moss R.L. Myosin binding protein C interaction with actin: characterization and mapping of the binding site. J. Biol. Chem. 2011; 286: 2008–2016.
  • 82. Christenson R.H., Phillips D. Sensitive and high sensitivity next genera-tion cardiac troponin assays: more than just a name. Pathology 2011; 43: 213–219.
  • 83. Leistner D.M., Klotsche J., Pieper L. et al. Circulating troponin as measured by a sensitive assay for cardiovascular risk assessment in primary prevention. Clin. Chem. 2012; 58: 200–208.
  • 84. de Lemos J.A., Drazner M.H., Omland T. et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA 2010; 304: 2503–2512.
  • 85. deFilippi C.R., de Lemos J.A., Christenson R.H. et al. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA 2010; 304: 2494–2502
  • 86. Saunders J.T., Nambi V., de Lemos J.A. et al. Cardiac troponin T meas-ured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the Atherosclerosis Risk in Communities Study. Circulation 2011; 123: 1367–1376.
  • 87. Wang T.J., Gona P., Larson M.G. et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N. Engl. J. Med. 2006; 355: 2631–2639.
  • 88. Zethelius B., Berglund L., Sundström J. et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N. Engl. J. Med. 2008; 358: 2107–2116.
  • 89. Melander O., Newton-Cheh C., Almgren P. et al. Novel and conventional biomarkers for prediction of incident cardiovascular events in the commu-nity. JAMA 2009; 302: 49–57.
  • 90. Blankenberg S., Zeller T., Saarela O. et al. MORGAM Project. Contribu-tion of 30 biomarkers to 10-year cardiovascular risk estimation in 2 popula-tion cohorts: the MONICA, risk, genetics, archiving, and monograph (MOR-GAM) biomarker project. Circulation 2010; 121: 2388–2397.
  • 91. de Ruijter W., Westendorp R.G., Assendelft W.J. et al. Use of Framing-ham risk score and new biomarkers to predict cardiovascular mortality in older people: population based observational cohort study. BMJ 2009; 338: a3083.73.
  • 92. Schnabel R.B., Schulz A., Messow C.M. et al. Multiple marker approach to risk stratification in patients with stable coronary artery disease. Eur. Heart. J. 2010; 31: 3024–3031.
  • 93. Kones R. Is prevention a fantasy, or the future of medicine? A panoramic view of recent data, status, and direction in cardiovascular prevention. Ther. Adv. Cardiovasc. Dis. 2011; 5: 61–81.
  • 94. Riccioni G., Sblendorio V. Atherosclerosis: from biology to pharmacological treatment. J. Geriatr. Cardiol. 2012; 9: 305–317.
  • 95. Adams N.B., Lutsey P.L., Folsom A.R. et al. Statin therapy and levels of hemostatic factors in a healthy population: the Multi-Ethnic Study of Atherosclerosis. J. Thromb. Haemost. 2013; 11: 1078–1084.
  • 96. Kones R. Rosuvastatin, inflammation, C-reactive protein, JUPITER, and primary prevention of cardiovascular disease--a perspective. Drug Des. Devel. Ther. 2010; 4: 383–413.
  • 97. Kones R. Primary prevention of coronary heart disease: integration of new data, evolving views, revised goals, and role of rosuvastatin in man-agement. A comprehensive survey. Drug Des. Devel. Ther. 2011; 5: 325–380.
  • 98. Rubba P., Marotta G., Gentile M. Efficacy and safety of rosuvastatin in the management of dyslipidemia. Vasc. Health Risk. Manag. 2009; 5: 343–352
  • 99. Mora S., Ridker P.M. Justification for the Use of Statins in Primary Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER)-can C-reactive protein be used to target statin therapy in primary prevention? Am. J. Cardiol. 2006; 97(2A): 33A–41A
  • 100. Mora S., Glynn R.J., Boekholdt S.M., Nordestgaard B.G., Kastelein J.J., Ridker P.M. On-treatment non-high-density lipoprotein cholesterol, apolipoprotein B, triglycerides, and lipid ratios in relation to residual vascular risk after treatment with potent statin therapy: JUPITER (justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin). J. Am. Coll. Cardiol. 2012; 59: 1521–1528.
  • 101. Beauloye V., Zech F., Tran H.T., Clapuyt P., Maes M., Brichard S.M. Determinants of early atherosclerosis in obese children and adolescents. J. Clin. Endocrinol. Metab. 2007; 92: 3025–3032.
  • 102. Sorisky A. Molecular links between obesity and cardiovascular disease. Am. J. Ther. 2002; 9: 516–521.
  • 103. Katagiri H., Yamada T., Oka Y. Adiposity and cardiovascular disorders: disturbance of the regulatory system consisting of humoral and neuronal signals. Circ. Res. 2006; 101: 27–39.
  • 104. Stewart J.C., Fitzgerald G.J., Kamarck T.W. Hostility now, depression later? Longitudinal associations among emotional risk factors for coronary artery disease. Ann. Behav. Med. 2010; 39: 258–266.
  • 105. Stewart J.C., Janicki D.L., Muldoon M.F, Sutton-Tyrrell K., Kamarck T.W. Negative emotions and 3-year progression of subclinical athero-sclerosis. Arch. Gen. Psychiatry 2007; 64: 225–233.
  • 106. Stewart J.C., Rand K.L., Muldoon M.F., Kamarck T.W. A prospective evaluation of the directionality of the depression-inflammation relation-ship. Brain Behav. Immun. 2009; 23: 936–944.
  • 107. Gidron Y., Davidson K., Bata I. The short-term effects of a hostility-reduction intervention on male coronary heart disease patients. Health Psychol. 1999; 18: 416–420.
  • 108. Cossette S., Frasure-Smith N., Lespérance F. Clinical implications of a reduction in psychological distress on cardiac prognosis in patients participating in a psychosocial intervention program. Psychosom. Med. 2001; 63: 257–266.
  • 109. Stanger O., Herrmann W., Pietrzik K. et al.Clinical use and rational management of homocysteine, folic acid, and B vitamins in cardiovascular and thrombotic diseases. Z. Kardiol. 2004; 93: 439–453.
  • 110. Zappacosta B., Mastroiacovo P., Persichilli S. et al. Homocysteine lowering by folate-rich diet or pharmacological supplementations in subjects with moderate hyperhomocysteinemia. Nutrients 2013; 5: 1531–1543.
  • 111. Hiatt W.R., Nehler M.R. Peripheral arterial disease. Adv. Int. Med. 2001; 47: 89–110.
  • 112. Leng G.C., Lee A.J., Fowkes F.G. et al. Incidence, natural history and cardiovascular events in symptomatic and asymptomatic peripheral arterial disease in the general population. In. J. Epidemiol. 1996; 25: 1172–1181.
  • 113. Aronow W.S. Peripheral arterial disease. Geriatrics 2007; 62: 19–25.
  • 114. Aronow W.S. Peripheral arterial disease in women. Maturitas 2009; 64: 204–211.
  • 115. Knepper J.P, Henke P.K. Diagnosis, prevention, and treatment of claudication. Surg. Clin. North. Am. 2013; 93: 779–788.
  • 116. McDermott MM. The magnitude of the problem of peripheral arterial disease: epidemiology and clinical significance. Cleve. Clin. J. Med. 2006; 73(Suppl 4): S2–7.
  • 117. O'Donnell M.E., Reid J.A., Lau L.L., Hannon R.J., Lee B. Optimal Management of Peripheral Arterial Disease for the Non-Specialist. Ulster Med. J. 2011; 80: 33–41.
  • 118. Morgan M.B., Crayford T., Murrin B., Fraser S.C. Developing the Vascular Quality of Life Questionnaire: a new disease-specific quality of life measure for use in lower limb ischemia. J. Vasc. Surg. 2001; 33: 679–687.
  • 119. Fintel D.J. Oral antiplatelet therapy for atherothrombotic disease: overview of current and emerging treatment options. Vasc. Health Risk. Manag. 2012; 8: 77–89.
  • 120. Watson L., Ellis B., Leng G.C. Exercise for intermittent claudication. Cochrane Database Syst. Rev. 2008; (4): CD000990.
  • 121. Regensteiner J.G., Ware J.E. Jr., McCarthy W.J. et al. Effect of cilostazol on treadmill walking, community-based walking ability, and health-related quality of life in patients with intermittent claudication due to peripheral arterial disease: meta-analysis of six randomized controlled trials. J. Am. Geriatr. Soc. 2002; 50: 1939–1946.
  • 122. Ahimastos A.A., Pappas E.P., Buttner P.G., Walker P.J., Kingwell B.A., Golledge J. A meta-analysis of the outcome of endovascular and noninvasive therapies in the treatment of intermittent claudication. J. Vasc. Surg. 2011; 54: 1511–1521.
  • 123. Health Quality Ontario. Stenting for peripheral artery disease of the lower extremities: an evidence-based analysis. Ont. Health. Technol. Assess. Ser. 2010; 10: 1–88.
  • 124. Taylor S.M., Cull D.L., Kalbaugh C.A. et al. Comparison of interven-tional outcomes according to preoperative indication: a single center analysis of 2,240 limb revascularizations. J. Am. Coll. Surg. 2009; 208: 770–778.
  • 125. Madonna R., De Caterina R. Stem cells and growth factor delivery systems for cardiovascular disease. J. Biotechnol. 2011; 154: 291–297.
  • 126. Segers V.F., Lee R.T. Biomaterials to enhance stem cell function in the heart. Circ. Res. 2011; 109: 910–922.
  • 127. Matoba S., Tatsumi T., Murohara T. et al. Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Thera-peutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia. Am. Heart. J. 2008; 156: 1010–1018.
  • 128. Kalka C., Masuda H., Takahashi T. et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl. Acad. Sci. USA 2000; 97: 3422–3427.
  • 129. Kawamoto A., Asahara T., Losordo D.W. Transplantation of endo-thelial progenitor cells for therapeutic neovascularization. Cardiovasc. Radiat. Med. 2002; 3: 221–225.
  • 130. Raval Z., Losordo D.W. Cell therapy of peripheral arterial disease: from experimental findings to clinical trials. Circ. Res. 2013; 112: 1288– –1302.
  • 131. Franz R.W., Parks A., Shah K.J., Hankins T., Hartman J.F., Wright M.L. Use of autologous bone marrow mononuclear cell implantation therapy as a limb salvage procedure in patients with severe peripheral arterial disease. J. Vasc. Sur. 2009; 50: 1378–1390.
  • 132. Lawall H., Bramlage P., Amann B. Treatment of peripheral arterial disease using stem and progenitor cell therapy. J. Vasc. Surg. 2011; 53: 445–453.
  • 133. Kinoshita M., Fujita Y., Katayama M. et al. Long-term clinical outcome after intramuscular transplantation of granulocyte colony stimulating factor-mobilized CD34 positive cells in patients with critical limb ischemia. Atherosclerosis 2012; 224: 440–445.
  • 134. Losordo D.W., Kibbe M.R., Mendelsohn F. et al. A randomized, con-trolled pilot study of autologous CD34+ cell therapy for critical limb ischemia. Circ. Cardiovasc. Interv. 2012; 5: 821–830.
  • 135. Moazzami K., Majdzadeh R., Nedjat S. Local intramuscular transplanta-tion of autologous mononuclear cells for critical lower limb ischaemia. Cochrane Database Syst. Rev. 2011; (12): CD008347.
  • 136. Zhou J., Zhao Y., Wang J. et al. Therapeutic angiogenesis using basic fibroblast growth factor in combination with a collagen matrix in chronic hindlimb ischemia. ScientificWorldJournal. 2012; 2012: 652794.
  • 137. Deindl E., Buschmann I., Hoefer I.E. et al. Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. Circ. Res. 2001; 89: 779–786.
  • 138. Hirata Y., Nabekura T., Maruyama H., Aonuma K., Satoh M. Elevation of plasma basic fibroblast growth factor after nocturnal hypoxic events in patients with obstructive sleep apnea syndrome. Springerplus. 2013; 2: 260.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-ca1760e1-6b57-4066-be90-52151e66da84
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.