Preferences help
enabled [disable] Abstract
Number of results
2011 | 38 | 2 | 245-283
Article title

Lokalny układ renina-angiotensyna - nowy łącznik pomiędzy mózgiem a tarczycą?

Title variants
Renin-angiotensin system – new link between brain and thyroid?
Languages of publication
Renin-angiotensin system (RAS) belongs to the most effective regulatory circuits in human biology. Research-data generated in the last years considerably improved the understanding of RAS structure and function. Alternative enzymatic pathways have been described as well as new angiotensin-metabolites reacting with their specific receptors. An existence of local – tissue and organ specific RAS has been suggested in opposition to the classical hormonal system. This review has been focused on the local RAS of the central nervous system and its role in the development of cognitive dysfunction and in the pathogenesis of dementia. A potential interaction of local RAS and thyroid hormones was also discussed.
Układ renina-angiotensyna (ang. renin-angiotensin system, RAS) jest jednym z najbardziej efektywnych systemów regulacyjnych ludzkiego organizmu. Badania ostatnich lat znacznie poszerzyły wiedzę na temat struktury i funkcji RAS. Opisane zostały alternatywne szlaki enzymatyczne i nowe aktywne metabolity angiotensyny oraz specyficzne dla nich receptory. Powstała również koncepcja swoistych dla poszczególnych tkanek i narządów lokalnych układów RAS. Niniejsza praca skoncentrowana została na przedstawieniu lokalnego układu RAS ośrodkowego układu nerwowego i jego roli w rozwoju zaburzeń poznawczych oraz patogenezie demencji. Przedyskutowano również potencjalne znaczenie interakcji lokalnych układów RAS z hormonami tarczycy.

Physical description
  • Klinika Endokrynologii i Chorób Metabolicznych Instytut Centrum Zdrowia Matki Polki w Łodzi,
  • Klinika Endokrynologii i Chorób Metabolicznych Instytut Centrum Zdrowia Matki Polki w Łodzi
  • Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev. 2006; 86:747-803.
  • Shi L, Mao C, Xu Z, Zhang L. Angiotensin-converting enzymes and drug discovery in cardiovascular diseases. Drug Discov Today. 2010; 15: 332-341.
  • de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000; 52: 415-472.
  • Hanif K, Bid HK, Konwar R. Reinventing the ACE inhibitors: some old and new implications of ACE inhibition. Hypertens Res. 2010; 33: 11-21.
  • Matsubara H, Sugaya T, Murasawa S, Nozawa Y, Mori Y, Masaki H i wsp. Tissue-specific expression of human angiotensin II AT1 and AT2 receptors and cellular localization of subtype mRNAs in adult human renal
  • Steckelings UM, Larhed M, Hallberg A, Widdop RE, Jones ES, Wallinder C i wsp. Non-peptide AT2-receptor agonists. Curr Opin Pharmacol. 2011; 11: 187 192.
  • Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M i wsp. Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest. 2009; 119: 524-530.
  • Benndorf RA, Krebs C, Hirsch-Hoffmann B, Schwedhelm E, Cieslar G, Schmidt-Haupt R i wsp. Angiotensin II type 2 receptor deficiency aggravates renal injury and reduces survival in chronic kidney disease in mice. Kidney Int. 2009; 75: 1039-1049.
  • Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000; 275: 33238 33243.
  • Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N i wsp. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000; 87: E1-9.
  • Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I i wsp. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003; 100: 8258-8263.
  • Wright JW, Harding JW. Important role for angiotensin III and IV in the brain renin-angiotensin system. Brain Res Brain Res Rev. 1997; 25: 96-124.
  • Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T i wsp. Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem. 2001; 276: 48623-48626.
  • Stragier B, De Bundel D, Sarre S, Smolders I, Vauquelin G, Dupont A i wsp. Involvement of insulin-regulated aminopeptidase in the effects of the renin-angiotensin fragment angiotensin IV: a review. Heart Fail Rev. 2008; 13: 321 337.
  • Nguyen G. Renin and prorenin receptor in hypertension: what's new? Curr Hypertens Rep. 2011; 13: 79-85.
  • Kaneshiro Y, Ichihara A, Sakoda M, Takemitsu T, Nabi AH, Uddin MN i wsp. Slowly progressive, angiotensin II-independent glomerulosclerosis in human (pro)renin receptor-transgenic rats. J Am Soc Nephrol. 2007; 18: 1789-1795.
  • Burcklé CA, Jan Danser AH, Müller DN, Garrelds IM, Gasc JM, Popova E i wsp. Elevated blood pressure and heart rate in human renin receptor transgenic rats. Hypertension. 2006; 47: 552-556.
  • Kohlstedt K, Busse R, Fleming I. Signaling via the angiotensin-converting enzyme enhances the expression of cyclooxygenase-2 in endothelial cells. Hypertension. 2005; 45: 126-132.
  • Allen AM, O'Callaghan EL, Hazelwood L, Germain S, Castrop H, Schnermann J i wsp. Distribution of cells expressing human renin-promoter activity in the brain of a transgenic mouse. Brain Res. 2008; 1243: 78-85.
  • Jouquey S, Mathieu MN, Hamon G, Chevillard C. Effect of chronic treatment with trandolapril or enalapril on brain ACE activity in spontaneously hypertensive rats. Neuropharmacology. 1995; 34: 1689-1692
  • Ganten D, Hermann K, Unger T, Lang RE. The tissue renin-angiotensin systems: focus on brain angiotensin, adrenal gland and arterial wall. Clin Exp Hypertens A. 1983; 5: 1099-1118.
  • Dzau VJ. Vascular angiotensin pathways: a new therapeutic target. J Cardiovasc Pharmacol. 1987; 10 Suppl 7: S9-16.
  • Bickerton RK, Buckley JP. Evidence for a Central Mechanism in Angiotensin Induced Hypertension. Proc Soc Exp Biol Med. 1961; 106: 834-836
  • Cuadra AE, Shan Z, Sumners C, Raizada MK. A current view of brain renin-angiotensin system: Is the (pro)renin receptor the missing link? Pharmacol Ther. 2010; 125: 27-38.
  • von Bohlen und Halbach O, Albrecht D. The CNS renin-angiotensin system. Cell Tissue Res. 2006; 326: 599-616.
  • Becker LK, Etelvino GM, Walther T, Santos RA, Campagnole-Santos MJ. Immunofluorescence localization of the receptor Mas in cardiovascular-related areas of the rat brain. Am J Physiol Heart Circ Physiol. 2007; 293: H1416-1424.
  • Sumners C, Tang W, Zelezna B, Raizada MK. Angiotensin II receptor subtypes are coupled with distinct signal-transduction mechanisms in neurons and astrocytes from rat brain. Proc Natl Acad Sci USA. 1991; 88: 7567-7571.
  • Fogarty DJ, Sánchez-Gómez MV, Matute C. Multiple angiotensin receptor subtypes in normal and tumor astrocytes in vitro. Glia. 2002; 39: 304-313.
  • Danielyan L, Lourhmati A, Verleysdonk S, Kabisch D, Proksch B, Thiess U I wsp. Angiotensin receptor type 1 blockade in astroglia decreases hypoxia-induced cell damage and TNF alpha release. Neurochem Res. 2007; 32: 1489 1498.
  • Harding JW, Sullivan MJ, Hanesworth JM, Cushing LL, Wright JW. Inability of [125I]Sar1, Ile8-angiotensin II to move between the blood and cerebrospinal fluid compartments. J Neurochem. 1988; 50: 554-557.
  • Duvernoy HM, Risold PY. The circumventricular organs: an atlas of comparative anatomy and vascularization. Brain Res Rev. 2007; 56: 119-147.
  • Deschepper CF, Bouhnik J, Ganong WF. Colocalization of angiotensinogen and glial fibrillary acidic protein in astrocytes in rat brain. Brain Res. 1986; 374: 195-198.
  • Richoux JP, Bouhnik J, Clauser E, Corvol P. The renin-angiotensin system in the rat brain. Immunocytochemical localization of angiotensinogen in glial cells and neurons. Histochemistry. 1988; 89: 323-331.
  • Schinke M, Baltatu O, Böhm M, Peters J, Rascher W, Bricca G i wsp. Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen. Proc Natl Acad Sci USA. 1999; 96: 3975-3980.
  • Monti J, Schinke M, Böhm M, Ganten D, Bader M, Bricca G. Glial angiotensinogen regulates brain angiotensin II receptors in transgenic rats TGR(ASrAOGEN). Am J Physiol Regul Integr Comp Physiol. 2001; 280: R233 R240.
  • Sinn PL, Sigmund CD. Identification of three human renin mRNA isoforms from alternative tissue-specific transcriptional initiation. Physiol Genomics. 2000; 3: 25-31.
  • Xu D, Borges GR, Grobe JL, Pelham CJ, Yang B, Sigmund CD. Preservation of intracellular renin expression is insufficient to compensate for genetic loss of secreted renin. Hypertension. 2009; 54: 1240-1247.
  • Xu D, Borges GR, Davis DR, Agassandian K, Sequeira Lopez ML, Gomez RA I wsp. Neuron- or glial-specific ablation of secreted renin does not affect renal renin, baseline arterial pressure, or metabolism. Physiol Genomics. 2011; 43: 286-294.
  • Vila-Porcile E, Corvol P. Angiotensinogen, prorenin, and renin are Co-localized in the secretory granules of all glandular cells of the rat anterior pituitary: an immunoultrastructural study. J Histochem Cytochem. 1998; 46: 301-311.
  • Lavoie JL, Cassell MD, Gross KW, Sigmund CD. Adjacent expression of renin and angiotensinogen in the rostral ventrolateral medulla using a dual-reporter transgenic model. Hypertension. 2004; 43: 1116-1119.
  • Nguyen G, Delarue F, Burcklé C, Bouzhir L, Giller T i wsp. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 2002; 109: 1417-1427.
  • Juillerat-Jeanneret L, Celerier J, Chapuis Bernasconi C, Nguyen G, Wostl W, Maerki HP i wsp. Renin and angiotensinogen expression and functions in growth and apoptosis of human glioblastoma. Br J Cancer. 2004; 90: 1059-1068.
  • Shan Z, Cuadra AE, Sumners C, Raizada MK. Characterization of a functional (pro)renin receptor in rat brain neurons. Exp Physiol. 2008; 93: 701-708.
  • Takahashi K, Hiraishi K, Hirose T, Kato I, Yamamoto H, Shoji I i wsp. Expression of (pro)renin receptor in the human brain and pituitary, and co localisation with arginine vasopressin and oxytocin in the hypothalamus. J Neuroendocrinol. 2010; 22: 453-459.
  • Shan Z, Shi P, Cuadra AE, Dong Y, Lamont GJ, Li Q i wsp. Involvement of the brain (pro)renin receptor in cardiovascular homeostasis. Circ Res. 2010; 107: 934-938.
  • Hirose T, Hashimoto M, Totsune K, Metoki H, Hara A, Satoh M i wsp. Association of (pro)renin receptor gene polymorphisms with lacunar infarction and left ventricular hypertrophy in Japanese women: the Ohasama study. Hypertens Res. 2011; 34: 530-535.
  • Ramser J, Abidi FE, Burckle CA, Lenski C, Toriello H, Wen G i wsp. A unique exonic splice enhancer mutation in a family with X-linked mental retardation and epilepsy points to a novel role of the renin receptor. Hum Mol Genet. 2005; 14: 1019-1027.
  • Contrepas A, Walker J, Koulakoff A, Franek KJ, Qadri F, Giaume C, i wsp. A role of the (pro)renin receptor in neuronal cell differentiation. Am J Physiol Regul Integr Comp Physiol. 2009; 297: R250-R257.
  • Baltatu OC, Campos LA, Bader M. Local renin-angiotensin system and the brain -a continuous quest for knowledge. Peptides. 2011; 32: 1083-1086.
  • Grisé C, Boucher R, Thibault G, Genest J. Formation of angiotensin II by tonin from partially purified human angiotensinogen. Can J Biochem. 1981; 59: 250 255.
  • Pesquero JL, Boschcov P, Oliveira MC, Paiva AC. Effect of substrate size on tonin activity. Biochem Biophys Res Commun. 1982; 108: 1441-1446.
  • Lopes ES, Sumitani M, Juliano L, Beraldo WT, Pesquero JL. Distribution of tonin- and kallikrein-like activities in rat brain. Brain Res. 1997; 769: 152-157.
  • Araujo RC, Lima MP, Lomez ES, Bader M, Pesquero JB, Sumitani M i wsp. Tonin expression in the rat brain and tonin-mediated central production of ngiotensin II. Physiol Behav. 2002; 76: 327-333.
  • Cardoso CC, Alenina N, Ferreira AJ, Qadri F, Lima MP, Gross V i wsp. Increased blood pressure and water intake in transgenic mice expressing rat tonin in the brain. Biol Chem. 2010; 391: 435-441.
  • Hackenthal E, Hackenthal R, Hilgenfeldt U. Purification and partial characterization of rat brain acid proteinase (isorenin). Biochim Biophys Acta. 1978; 522: 561-573.
  • Imboden H, Patil J, Nussberger J, Nicoud F, Hess B, Ahmed N i wsp. Endogenous angiotensinergic system in neurons of rat and human trigeminal ganglia. Regul Pept. 2009; 154: 23-31.
  • Patil J, Schwab A, Nussberger J, Schaffner T, Saavedra JM, Imboden H. Intraneuronal angiotensinergic system in rat and human dorsal root ganglia. Regul Pept. 2010; 162: 90-98.
  • Phillips MI, Speakman EA, Kimura B. Levels of angiotensin and molecular biology of the tissue renin angiotensin systems. Regul Pept. 1993; 43: 1-20.
  • Koshiya K, Kato T, Tanaka R, Kato T. Brain peptidases: their possible neuronal and glial localization. Brain Res. 1984; 324: 261-270.
  • Miners JS, Ashby E, Van Helmond Z, Chalmers KA, Palmer LE, Love S i wsp. Angiotensin-converting enzyme (ACE) levels and activity in Alzheimer's disease, and relationship of perivascular ACE-1 to cerebral amyloid angiopathy. Neuropathol Appl Neurobiol. 2008; 34: 181-193.
  • Mendelsohn FA, Chai SY, Dunbar M. In vitro autoradiographic localization of angiotensin-converting enzyme in rat brain using 125I-labelled MK351A. J Hypertens Suppl. 1984; 2: S41-S44.
  • Strittmatter SM, Lo MM, Javitch JA, Snyder SH. Autoradiographic visualization of angiotensin-converting enzyme in rat brain with [3H]captopril: localization to a striatonigral pathway. Proc Natl Acad Sci USA. 1984; 81: 1599-1603.
  • Arregui A, Perry EK, Rossor M, Tomlinson BE. Angiotensin converting enzyme in Alzheimer's disease increased activity in caudate nucleus and cortical areas. J Neurochem. 1982; 38: 1490-1492.
  • Hamming I, Timens W, Bulthuis ML, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203: 631-637.
  • Doobay MF, Talman LS, Obr TD, Tian X, Davisson RL, Lazartigues E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol. 2007; 292: R373-R381.
  • Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002; 532: 107-110.
  • Xia H, Lazartigues E. Angiotensin-converting enzyme 2: central regulator for cardiovascular function. Curr Hypertens Rep. 2010; 12: 170-175.
  • Felix D, Harding JW. Manipulation of aminopeptidase activities: differential effects on iontophoretically applied angiotensins in rat brain. J Hypertens Suppl. 1986; 4: S398-S401.
  • de Mota N, Iturrioz X, Claperon C, Bodineau L, Fassot C, Roques BP i wsp. Human brain aminopeptidase A: biochemical properties and distribution in brain nuclei. J Neurochem. 2008; 106: 416-428.
  • Noble F, Banisadr G, Jardinaud F, Popovici T, Lai-Kuen R, Chen H i wsp. First discrete autoradiographic distribution of aminopeptidase N in various structures of rat brain and spinal cord using the selective iodinated inhibitor [125I]RB 129. Neuroscience. 2001; 105: 479-488.
  • Cesari M, Rossi GP, Pessina AC. Biological properties of the angiotensin peptides other than angiotensin II: implications for hypertension and cardiovascular diseases. J Hypertens. 2002; 20: 793-799.
  • Stragier B, Sarre S, Vanderheyden P, Vauquelin G, Fournié-Zaluski MC, Ebinger G i wsp. Metabolism of angiotensin II is required for its in vivo effect on dopamine release in the striatum of the rat. J Neurochem. 2004; 90: 1251-1257.
  • Phillips MI, Shen L, Richards EM, Raizada MK. Immunohistochemical mapping of angiotensin AT1 receptors in the brain. Regul Pept. 1993; 44: 95-107.
  • Phillips MI, Sumners C. Angiotensin II in central nervous system physiology. Regul Pept. 1998; 78: 1-11.
  • Campagnole-Santos MJ, Diz DI, Santos RA, Khosla MC, Brosnihan KB, Ferrario CM. Cardiovascular effects of angiotensin-(1-7) injected into the dorsal medulla of rats. Am J Physiol. 1989; 257: H324-H329.
  • Oliveira DR, Santos RA, Santos GF, Khosla M, Campagnole-Santos MJ. Changes in the baroreflex control of heart rate produced by central infusion of selective angiotensin antagonists in hypertensive rats. Hypertension. 1996; 27: 1284-1290.
  • Gironacci MM, Valera MS, Yujnovsky I, Peña C. Angiotensin-(1-7) inhibitory mechanism of norepinephrine release in hypertensive rats. Hypertension. 2004; 44: 783-787.
  • Inaba S, Iwai M, Furuno M, Tomono Y, Kanno H, Senba I i wsp. Continuous activation of renin-angiotensin system impairs cognitive function in renin/angiotensinogen transgenic mice. Hypertension. 2009; 53: 356-362.
  • Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990; 86: 1343-1346.
  • Zintzaras E, Raman G, Kitsios G, Lau J. Angiotensin-converting enzyme insertion/deletion gene polymorphic variant as a marker of coronary artery disease: a meta-analysis. Arch Intern Med. 2008; 168: 1077-1089.
  • Kehoe PG, Russ C, McIlory S, Williams H, Holmans P, Holmes C i wsp. Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. Nat Genet. 1999; 21: 71-72.
  • Alvarez R, Alvarez V, Lahoz CH, Martínez C, Peña J, Sánchez JM i wsp. Angiotensin converting enzyme and endothelial nitric oxide synthase DNA polymorphisms and late onset Alzheimer's disease. J Neurol Neurosurg Psychiatry. 1999; 67: 733-736.
  • Hu J, Miyatake F, Aizu Y, Nakagawa H, Nakamura S, Tamaoka A i wsp. Angiotensin-converting enzyme genotype is associated with Alzheimer disease in the Japanese population. Neurosci Lett. 1999; 277: 65-67.
  • Narain Y, Yip A, Murphy T, Brayne C, Easton D, Evans JG i wsp. The ACE gene and Alzheimer's disease susceptibility. J Med Genet. 2000;37: 695-697.
  • Kölsch H, Jessen F, Freymann N, Kreis M, Hentschel F, Maier W i wsp. ACE I/D polymorphism is a risk factor of Alzheimer's disease but not of vascular dementia. Neurosci Lett. 2005; 377: 37-39.
  • Wang B, Jin F, Yang Z, Lu Z, Kan R, Li S i wsp. The insertion polymorphism in angiotensin-converting enzyme gene associated with the APOE epsilon 4 allele increases the risk of late-onset Alzheimer disease. J Mol Neurosci. 2006; 30: 267 271.
  • Farrer LA, Sherbatich T, Keryanov SA, Korovaitseva GI, Rogaeva EA, Petruk S i wsp. Association between angiotensin-converting enzyme and Alzheimer disease. Arch Neurol. 2000; 57: 210-214.
  • Richard F, Fromentin-David I, Ricolfi F, Ducimetière P, Di Menza C, Amouyel P i wsp. The angiotensin I converting enzyme gene as a susceptibility factor for dementia. Neurology. 2001; 56: 1593-1595.
  • Buss S, Müller-Thomsen T, Hock C, Alberici A, Binetti G, Nitsch RM i wsp. No association between DCP1 genotype and late-onset Alzheimer disease. Am J Med Genet. 2002; 114: 440-445.
  • Carbonell J, Allen R, Kalsi G, McQuillin A, Livingston G, Katona C i wsp. Variation in the DCP1 gene, encoding the angiotensin converting enzyme ACE, is not associated with increased susceptibility to Alzheimer's disease. Psychiatr Genet. 2003; 13: 47-50.
  • Seripa D, Forno GD, Matera MG, Gravina C, Margaglione M, Palermo MT i wsp. Methylenetetrahydrofolate reductase and angiotensin converting enzyme gene polymorphisms in two genetically and diagnostically distinct cohort of Alzheimer patients. Neurobiol Aging. 2003; 24: 933-939.
  • Nirmal S, Tripathi M, Shastri SS, Sagar R, S V. Association of Angiotensin-converting enzyme insertion(i)/deletion (d) genotype in Alzheimer's disease patients of north Indian population. Int J Neurosci. 2011; 121: 557-561.
  • Sleegers K, den Heijer T, van Dijk EJ, Hofman A, Bertoli-Avella AM, Koudstaal PJ i wsp. ACE gene is associated with Alzheimer's disease and atrophy of hippocampus and amygdala. Neurobiol Aging. 2005; 26: 1153-1159.
  • Keage HA, Matthews FE, Yip A, Gao L, McCracken C, McKeith IG i wsp. APOE and ACE polymorphisms and dementia risk in the older population over prolonged follow-up: 10 years of incidence in the MRC CFA Study. Age Ageing. 2010; 39: 104-111.
  • Lucatelli JF, Barros AC, Silva VK, Machado Fda S, Constantin PC, Dias AA i wsp. Genetic influences on Alzheimer's disease: evidence of interactions between the genes APOE, APOC1 and ACE in a sample population from the South of Brazil. Neurochem Res. 2011; 36: 1533-1539.
  • Pandey P, Pradhan S, Modi DR, Mittal B. MTHFR and ACE gene polymorphisms and risk of vascular and degenerative dementias in the elderly. Brain Cogn. 2009; 71: 295-299.
  • Liu H, Liu M, Li W, Wu B, Zhang SH, Fang Y, i wsp. Association of ACE I/D gene polymorphism with vascular dementia: a meta-analysis. J Geriatr Psychiatry Neurol. 2009; 22: 10-22.
  • Richard F, Berr C, Amant C, Helbecque N, Amouyel P, Alpérovitch A. Effect of the angiotensin I-converting enzyme I/D polymorphism on cognitive decline. The EVA Study Group. Neurobiol Aging. 2000; 21): 75-80.
  • Bartrés-Faz D, Junqué C, Clemente IC, López-Alomar A, Valveny N, López-Guillén A i wsp. Angiotensin I converting enzyme polymorphism in humans with age-associated memory impairment: relationship with cognitive performance. Neurosci Lett. 2000; 290: 177-180.
  • Zhang Z, Deng L, Bai F, Shi Y, Yu H, Yuan Y i wsp. Alteration of resting brain function by genetic variation in angiotensin converting enzyme in amnestic-type mild cognitive impairment of Chinese Han. Behav Brain Res. 2010; 208: 619 625.
  • Zhang Z, Deng L, Bai F, Shi Y, Yu H, Yuan Y i wsp. ACE I/D polymorphism affects cognitive function and gray-matter volume in amnestic mild cognitive impairment. łagodne zaburzenia poznawcze Behav Brain Res. 2011; 218: 114 120.
  • Liu ME, Tsai SJ, Lu T, Hong CJ, Chen MC, Lin SL i wsp. No association of angiotensin I converting enzyme I/D polymorphism with domain-specific cognitive function in aged men without dementia. Neuromolecular Med. 2011; 13: 212-216.
  • Visscher PM, Tynan M, Whiteman MC, Pattie A, White I, Hayward C, i wsp. Lack of association between polymorphisms in angiotensin-converting-enzyme and methylenetetrahydrofolate reductase genes and normal cognitive ageing in humans. Neurosci Lett. 2003; 347: 175-178.
  • Meng Y, Baldwin CT, Bowirrat A, Waraska K, Inzelberg R, Friedland RP i wsp. Association of polymorphisms in the Angiotensin-converting enzyme gene with Alzheimer disease in an Israeli Arab community. Am J Hum Genet. 2006; 78: 871-877.
  • Helbecque N, Codron V, Cottel D, Amouyel P. An age effect on the association of common variants of ACE with Alzheimer's disease. Neurosci Lett. 2009; 461: 181-184.
  • Hajjar I, Kritchevsky S, Newman AB, Li R, Yaffe K, Simonsick EM i wsp. Renin angiotensin system gene polymorphisms modify angiotensin-converting enzyme inhibitors' effect on cognitive function: the health, aging and body composition study. J Am Geriatr Soc. 2010; 58: 1035-1042.
  • Taylor A, Ezquerra M, Bagri G, Yip A, Goumidi L, Cottel D i wsp. Alzheimer disease is not associated with polymorphisms in the angiotensinogen and renin genes. Am J Med Genet. 2001; 105: 761-764.
  • Chalmers KA, Culpan D, Kehoe PG, Wilcock GK, Hughes A, Love S. APOE promoter, ACE1 and CYP46 polymorphisms and beta-amyloid in Alzheimer's disease. Neuroreport. 2004; 15: 95-98.
  • Miners S, Ashby E, Baig S, Harrison R, Tayler H, Speedy E i wsp. Angiotensin-converting enzyme levels and activity in Alzheimer's disease: differences in brain and CSF ACE and association with ACE1 genotypes. Am J Transl Res. 2009; 1: 163-177.
  • Barnes NM, Cheng CH, Costall B, Naylor RJ, Williams TJ, Wischik CM. Angiotensin converting enzyme density is increased in temporal cortex from patients with Alzheimer's disease. Eur J Pharmacol. 1991; 200: 289-292.
  • Savaskan E, Hock C, Olivieri G, Bruttel S, Rosenberg C, Hulette C i wsp. Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer's dementia. Neurobiol Aging. 2001; 22: 541-546.
  • Ge J, Barnes NM. Alterations in angiotensin AT1 and AT2 receptor subtype levels in brain regions from patients with neurodegenerative disorders. Eur JPharmacol. 1996; 297: 299-306.
  • Hou DR, Wang Y, Zhou L, Chen K, Tian Y, Song Z i wsp. Altered angiotensin-converting enzyme and its effects on the brain in a rat model of Alzheimer disease. Chin Med J (Engl). 2008; 121: 2320-2323.
  • Hu J, Igarashi A, Kamata M, Nakagawa H. Angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide (A beta ); retards A beta aggregation, deposition, fibril formation; and inhibits cytotoxicity. J Biol Chem. 2001; 276: 47863-47868.
  • Hemming ML, Selkoe DJ. A myloid beta-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J Biol Chem. 2005; 280: 37644-37650.
  • Oba R, Igarashi A, Kamata M, Nagata K, Takano S, Nakagawa H. The N terminal active centre of human angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide. Eur J Neurosci. 2005; 21: 733-740.
  • Sun X, Becker M, Pankow K, Krause E, Ringling M, Beyermann M i wsp. Catabolic attacks of membrane-bound angiotensin-converting enzyme on the N terminal part of species-specific amyloid-beta peptides. Eur J Pharmacol. 2008; 588: 18-25.
  • Zou K, Maeda T, Watanabe A, Liu J, Liu S, Oba R i wsp. Abeta42-to-Abeta40- and angiotensin-converting activities in different domains of angiotensin-converting enzyme. J Biol Chem. 2009; 284: 31914-31920.
  • Eckman EA, Adams SK, Troendle FJ, Stodola BA, Kahn MA, Fauq AH i wsp. Regulation of steady-state beta-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme. J Biol Chem. 2006; 281: 30471-30478.
  • Hemming ML, Selkoe DJ, Farris W. Effects of prolonged angiotensin-converting enzyme inhibitor treatment on amyloid beta-protein metabolism in mouse models of Alzheimer disease. Neurobiol Dis. 2007; 26: 273-281.
  • Miners JS, Morris S, Love S, Kehoe PG. Accumulation of insoluble amyloid-β in down's syndrome is associated with increased BACE-1 and neprilysin activities. J Alzheimers Dis. 2011; 23: 101-108.
  • Wang J, Ho L, Chen L, Zhao Z, Zhao W, Qian X i wsp. Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J Clin Invest. 2007; 117: 3393-3402.
  • Ferrington L, Miners JS, Palmer LE, Bond SM, Povey JE, Kelly PA i wsp. Angiotensin II-inhibiting drugs have no effect on intraneuronal Aβ or oligomeric Aβ levels in a triple transgenic mouse model of Alzheimer's disease. Am J Transl Res. 2011; 3: 197-208.
  • Tsukuda K, Mogi M, Iwanami J, Min LJ, Sakata A, Jing F i wsp. Cognitive deficit in amyloid-beta-injected mice was improved by pretreatment with a low dose of telmisartan partly because of peroxisome proliferator-activated receptor-gamma activation. Hypertension. 2009; 54: 782-787.
  • Dong YF, Kataoka K, Tokutomi Y, Nako H, Nakamura T, Toyama K i wsp. Perindopril, a centrally active angiotensin-converting enzyme inhibitor, prevents cognitive impairment in mouse models of Alzheimer's disease. FASEB J. 2011; 25: 2911-2920.
  • Danielyan L, Klein R, Hanson LR, Buadze M, Schwab M, Gleiter CH i wsp. Protective effects of intranasal losartan in the APP/PS1 transgenic mouse model of Alzheimer disease. Rejuvenation Res. 2010; 13: 195-201.
  • Takeda S, Sato N, Takeuchi D, Kurinami H, Shinohara M, Niisato K, i wsp. Angiotensin receptor blocker prevented beta-amyloid-induced cognitive impairment associated with recovery of neurovascular coupling. Hypertension. 2009; 54: 1345-1352.
  • Tota S, Kamat PK, Saxena G, Hanif K, Najmi AK, Nath C. Central angiotensin converting enzyme facilitates memory impairment in intracerebroventricular streptozotocin treated rats. Behav Brain Res. 2012; 226: 317-330.
  • Washida K, Ihara M, Nishio K, Fujita Y, Maki T, Yamada M i wsp. Nonhypotensive dose of telmisartan attenuates cognitive impairment partially due to peroxisome proliferator-activated receptor-gamma activation in mice with chronic cerebral hypoperfusion. Stroke. 2010; 41: 1798-1806.
  • Pelisch N, Hosomi N, Ueno M, Nakano D, Hitomi H, Mogi M i wsp. Blockade of AT1 receptors protects the blood-brain barrier and improves cognition in Dahl salt-sensitive hypertensive rats. Am J Hypertens. 2011; 24: 362-368.
  • Yamada K, Horita T, Takayama M, Takahashi S, Takaba K, Nagata Y i wsp. Effect of a centrally active angiotensin converting enzyme inhibitor, perindopril, on cognitive performance in chronic cerebral hypo-perfusion rats. Brain Res. 2011; 1421: 110-120.
  • Yamada K, Uchida S, Takahashi S, Takayama M, Nagata Y, Suzuki N i wsp. Effect of a centrally active angiotensin-converting enzyme inhibitor, perindopril, on cognitive performance in a mouse model of Alzheimer's disease. Brain Res. 2010; 1352: 176-186.
  • Mogi M, Li JM, Tsukuda K, Iwanami J, Min LJ, Sakata A i wsp. Telmisartan prevented cognitive decline partly due to PPAR-gamma activation. Biochem Biophys Res Commun. 2008; 375: 446-449.
  • Jing F, Mogi M, Sakata A, Iwanami J, Tsukuda K, Ohshima K i wsp. Direct stimulation of angiotensin II type 2 receptor enhances spatial memory. J Cereb Blood Flow Metab. 2011; doi: 10.1038/jcbfm.2011.133.
  • Sakata A, Mogi M, Iwanami J, Tsukuda K, Min LJ, Fujita T i wsp. Sex-different effect of angiotensin II type 2 receptor on ischemic brain injury and cognitive function. Brain Res. 2009; 1300: 14-23.
  • Kerr DS, Bevilaqua LR, Bonini JS, Rossato JI, Köhler CA, Medina JH, i wsp. Angiotensin II blocks memory consolidation through an AT2 receptor-dependent mechanism. Psychopharmacology (Berl). 2005; 179: 529-535.
  • Braszko JJ, Kupryszewski G, Witczuk B, Wiśniewski K. Angiotensin II-(3-8)-hexapeptide affects motor activity, performance of passive avoidance and a conditioned avoidance response in rats. Neuroscience. 1988; 27: 777-783.
  • Olson ML, Olson EA, Qualls JH, Stratton JJ, Harding JW, Wright JW. Norleucine1-Angiotensin IV alleviates mecamylamine-induced spatial memory deficits. Peptides. 2004; 25: 233-241.
  • Wright JW, Clemens JA, Panetta JA, Smalstig EB, Weatherly LA, Kramár EA i wsp. Effects of LY231617 and angiotensin IV on ischemia-induced deficits in circular water maze and passive avoidance performance in rats. Brain Res. 1996; 717: 1-11.
  • Olson ML, Cero IJ. Intrahippocampal Norleucine¹-Angiotensin IV mitigates scopolamine-induced spatial working memory deficits. Peptides. 2010; 31: 2209 2215.
  • Ponikowski J, Owczarczyk I, Pawlikowski M. Aktywność cystynoaminopepty-dazy surowicy krwi u chorych psychicznie. Psychiatria Polska. 1972; 6: 439-443.
  • Rasmussen TE, Pedraza-Díaz S, Hardré R, Laustsen PG, Carríon AG, Kristensen T. Structure of the human oxytocinase/insulin-regulated aminopeptidase gene and localization to chromosome 5q21. Eur J Biochem. 2000; 267: 2297-2306.
  • Braszko JJ. Participation of D 1-4 dopamine receptors in the pro-cognitive effects of angiotensin IV and des-Phe 6 angiotensin IV. Neurosci Biobehav Rev. 2010; 34: 343-350.
  • Braszko JJ. (+)-UH 232, a partial agonist of the D3 dopamine receptors, attenuates cognitive effects of angiotensin IV and des-Phe(6)-angiotensin IV in rats. Eur Neuropsychopharmacol. 2010; 20: 218-225.
  • De Bundel D, Demaegdt H, Lahoutte T, Caveliers V, Kersemans K, Ceulemans AG i wsp. Involvement of the AT1 receptor subtype in the effects of angiotensin IV and LVV-haemorphin 7 on hippocampal neurotransmitter levels and spatial working memory. J Neurochem. 2010; 112: 1223-1234.
  • Andersson H, Demaegdt H, Vauquelin G, Lindeberg G, Karlén A, Hallberg M I wsp. Disulfide cyclized tripeptide analogues of angiotensin IV as potent and selective inhibitors of insulin-regulated aminopeptidase (IRAP). J Med Chem. 2010; 53: 8059-8071.
  • Gard PR, Olivier G, Golding B, Bourner C, Dang T, Haliru H i wsp. Assessment of biological activity of novel peptide analogues of angiotensin IV. J Pharm Pharmacol. 2011; 63: 565-571.
  • Albiston AL, Diwakarla S, Fernando RN, Mountford SJ, Yeatman HR, Morgan B i wsp. Identification and development of specific inhibitors for insulin-regulated aminopeptidase as a new class of cognitive enhancers. Br J Pharmacol. 2011; 164(1): 37-47.
  • Hellner K, Walther T, Schubert M, Albrecht D. Angiotensin-(1-7) enhances LTP in the hippocampus through the G-protein-coupled receptor Mas. Mol Cell Neurosci. 2005; 29: 427-435.
  • Staschewski J, Kulisch C, Albrecht D. Different Isoforms of Nitric Oxide Synthase Are Involved in Angiotensin-(1-7)-Mediated Plasticity Changes in the Amygdala in a Gender-Dependent Manner. Neuroendocrinology. 2011; doi: 10.1159/000328128
  • Dong YF, Kataoka K, Toyama K, Sueta D, Koibuchi N, Yamamoto E i wsp. Attenuation of brain damage and cognitive impairment by direct renin inhibition in mice with chronic cerebral hypoperfusion. Hypertension. 2011; 58: 635-642.
  • Duron E, Hanon O. Antihypertensive treatments, cognitive decline, and dementia. J Alzheimers Dis. 2010; 20: 903-914.
  • Fransen M, Anderson C, Chalmers J, Chapman N, Davis S, MacMahon S i wsp. Effects of a perindopril-based blood pressure-lowering regimen on disability and dependency in 6105 patients with cerebrovascular disease: a randomized controlled trial. Stroke. 2003; 34: 2333-2338.
  • Bosch J, Yusuf S, Pogue J, Sleight P, Lonn E, Rangoonwala B i wsp. Heart outcomes prevention evaluation Use of ramipril in preventing stroke: double blind randomised trial. BMJ. 2002; 324: 699-702.
  • Ohrui T, Matsui T, Yamaya M, Arai H, Ebihara S, Maruyama M i wsp. Angiotensin-converting enzyme inhibitors and incidence of Alzheimer's disease in Japan. J Am Geriatr Soc. 2004; 52: 649-650.
  • Ohrui T, Tomita N, Sato-Nakagawa T, Matsui T, Maruyama M, Niwa K i wsp. Effects of brain penetrating ACE inhibitors on Alzheimer disease progression. Neurology. 2004; 63: 1324-1325.
  • Lithell H, Hansson L, Skoog I, Elmfeldt D, Hofman A, Olofsson B i wsp. The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens. 2003; 21: 875-886.
  • Skoog I, Lithell H, Hansson L, Elmfeldt D, Hofman A, Olofsson B i wsp. Effect of baseline cognitive function and antihypertensive treatment on cognitive and cardiovascular outcomes: Study on COgnition and Prognosis in the Elderly (SCOPE). Am J Hypertens. 2005; 18: 1052-1059.
  • Peters R, Beckett N, Forette F, Tuomilehto J, Clarke R, Ritchie C i wsp. Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol. 2008; 7: 683-689.
  • Sink KM, Leng X, Williamson J, Kritchevsky SB, Yaffe K, Kuller L i wsp. Angiotensin-converting enzyme inhibitors and cognitive decline in older adults with hypertension: results from the Cardiovascular Health Study. Arch Intern Med. 2009; 169: 1195-1202.
  • Tedesco MA, Ratti G, Mennella S, Manzo G, Grieco M, Rainone AC i wsp. Comparison of losartan and hydrochlorothiazide on cognitive function and quality of life in hypertensive patients. Am J Hypertens. 1999; 12: 1130-1134.
  • Fogari R, Mugellini A, Zoppi A, Derosa G, Pasotti C, Fogari E i wsp. Influence of losartan and atenolol on memory function in very elderly hypertensive patients. J Hum Hypertens. 2003; 17: 781-785.
  • Anderson C, Teo K, Gao P, Arima H, Dans A, Unger T i wsp. Renin-angiotensin system blockade and cognitive function in patients at high risk of cardiovascular disease: analysis of data from the ONTARGET and TRANSCEND studies. Lancet Neurol. 2011; 10: 43-53.
  • Radaideh GA, Choueiry P, Ismail A, Eid E, Berrou JP, Sedefdjian A i wsp. Eprosartan-based hypertension therapy, systolic arterial blood pressure and cognitive function: analysis of Middle East data from the OSCAR study. Vasc Health Risk Manag. 2011; 7: 491-495.
  • Davies NM, Kehoe PG, Ben-Shlomo Y, Martin RM. Associations of antihypertensive treatments with Alzheimer's disease, vascular dementia, and other dementias. J Alzheimers Dis. 2011; 26: 699-708.
  • Li NC, Lee A, Whitmer RA, Kivipelto M, Lawler E, Kazis LE i wsp. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ. 2010;340: b5465. doi: 10.1136/bmj.b5465.
  • Hanon O, Berrou JP, Negre-Pages L, Goch JH, Nadhazi Z, Petrella R i wsp. Effects of hypertension therapy based on eprosartan on systolic arterial blood pressure and cognitive function: primary results of the Observational Study on Cognitive function And Systolic Blood Pressure Reduction open-label study. J Hypertens. 2008; 26: 1642-1650.
  • de la Torre JC. Cerebrovascular and cardiovascular pathology in Alzheimer's disease. Int Rev Neurobiol. 2009; 84: 35-48.
  • Tan ZS, Vasan RS. Thyroid function and Alzheimer's disease. J Alzheimers Dis. 2009; 16: 503-507.
  • Bernal J, Pekonen F. Ontogenesis of the nuclear 3, 5, 3'-triiodothyronine receptor in the human fetal brain. Endocrinology. 1984; 114: 677-679.
  • Chan SY, Martin-Santos A, Loubiere LS, Gonzalez AM, Stieger B, Logan A i wsp. The expression of thyroid hormone transporters in the human fetal cerebral cortex during early development and in N-Tera-2 neurodifferentiation. J Physiol. 2011; 589: 2827-2845.
  • Kalmijn S, Mehta KM, Pols HA, Hofman A, Drexhage HA, Breteler MM. Subclinical hyperthyroidism and the risk of dementia. The Rotterdam study. Clin Endocrinol (Oxf). 2000; 53: 733-737.
  • van Osch LA, Hogervorst E, Combrinck M, Smith AD. Low thyroid-stimulating hormone as an independent risk factor for Alzheimer disease. Neurology. 2004; 62: 1967-1971.
  • Bensenor IM, Lotufo PA, Menezes PR, Scazufca M. Subclinical hyperthyroidism and dementia: the Sao Paulo Ageing & Health Study (SPAH). BMC PublicHealth. 2010;10: 298.
  • Forti P, Olivelli V, Rietti E, Maltoni B, Pirazzoli G, Gatti R i wsp. Serum Thyroid-Stimulating Hormone as a Predictor of Cognitive Impairment in an Elderly Cohort. Gerontology. 2011; doi: 10.1159/000324522.
  • Latasa MJ, Belandia B, Pascual A. Thyroid hormones regulate beta-amyloid gene splicing and protein secretion in neuroblastoma cells. Endocrinology. 1998; 139: 2692-2698.
  • Ghenimi N, Alfos S, Redonnet A, Higueret P, Pallet V, Enderlin V. Adult-onset hypothyroidism induces the amyloidogenic pathway of amyloid precursor protein processing in the rat hippocampus. J Neuroendocrinol. 2010; 22: 951-959.
  • Fu AL, Zhou CY, Chen X. Thyroid hormone prevents cognitive deficyt in a mouse model of Alzheimer's disease. Neuropharmacology. 2010; 58: 722-729.
  • Kimura N, Kumamoto T, Masuda H, Hanaoka T, Hazama Y, Okazaki T i wsp. Relationship between thyroid hormone levels and regional cerebral blood flow in Alzheimer disease. Alzheimer Dis Assoc Disord. 2011; 25: 138-143.
  • Yotsumoto H, Imai Y, Kuzuya N, Uchimura H, Matsuzaki F. Increased levels of serum angiotensin-converting enzyme activity in hyperthyroidism. Ann Intern Med. 1982; 96: 326-328.
  • Nakamura Y, Takeda T, Ishii M, Nishiyama K, Yamakada M, Hirata Y i wsp. Elevation of serum angiotensin-converting enzyme activity in patients with hyperthyroidism. J Clin Endocrinol Metab. 1982; 55: 931-934.
  • Smallridge RC, Rogers J, Verma PS. Serum angiotensin-converting enzyme. Alterations in hyperthyroidism, hypothyroidism, and subacute thyroiditis. JAMA. 1983; 250: 2489-2493.
  • Asmah BJ, Wan Nazaimoon WM, Norazmi K, Tan TT, Khalid BA. Plasma renin and aldosterone in thyroid diseases. Horm Metab Res. 1997; 29: 580-583.
  • Gronhagen-Riska C, Fyhrquist F, Valimaki M, Lamberg BA. Thyroid hormones affect serum angiotensin I converting enzyme levels. Acta Med Scand. 1985; 217: 259-264.
  • Kuzmits R, Schwarz M, Weissel M. Effects of variations in thyroid hormone serum concentrations on serum ACE-activity. Horm Metab Res. 1985; 17: 528-531.
  • Mayr K, Stockhammer M. [Behavior of angiotensin converting enzyme in diseases of the thyroid]. Wien Klin Wochenschr. 1988; 100: 203-208.
  • Michel B, Grima M, Coquard C, Welsch C, Barthelmebs M, Imbs JL. Effects of triiodothyronine and dexamethasone on plasma and tissue angiotensyn converting enzyme in the rat. Fundam Clin Pharmacol. 1994; 8: 366-372.
  • Kobori H, Ichihara A, Suzuki H, Takenaka T, Miyashita Y, Hayashi M i wsp. Role of the renin-angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism. Am J Physiol. 1997; 273: H593-H599.
  • Prieto I, Segarra AB, Vargas F, Alba F, de Gasparo M, Ramirez M. Angiotensinase activity in hypothalamus and pituitary of hypothyroid, euthyroid and hyperthyroid adult male rats. Horm Metab Res. 2003; 35: 279-281.
  • Ruiz M, Montiel M, Jimenez E, Morell M. Effect of thyroid hormones on angiotensinogen production in the rat in vivo and in vitro. J Endocrinol. 1987; 115: 311-315.
  • Kjos T, Gotoh E, Tkacs N, Shackelford R, Ganong WF. Neuroendocrine regulation of plasma angiotensinogen. Endocrinology. 1991; 129: 901-906.
  • Carneiro-Ramos MS, Silva VB, Santos RA, Barreto-Chaves ML. Tissue-specific modulation of angiotensin-converting enzyme (ACE) in hyperthyroidism. Peptides. 2006; 27: 2942-2949.
  • Chen K, Carey LC, Valego NK, Rose JC. Thyroid hormone replacement normalizes renal renin and angiotensin receptor expression in thyroidectomized fetal sheep. Am J Physiol Regul Integr Comp Physiol. 2007; 293: R701-R706.
  • Segarra AB, Wangensteen R, Ramirez M, Banegas I, Hermoso F, Vargas F i wsp. Atrial angiotensinase activity in hypothyroid, euthyroid, and hyperthyroid rats. J Cardiovasc Pharmacol. 2006; 48: 117-120.
  • Chen K, Carey LC, Valego NK, Liu J, Rose JC. Thyroid hormone modulates renin and ANG II receptor expression in fetal sheep. Am J Physiol Regul Integr Comp Physiol. 2005; 289: R1006-R1014.
  • Hong-Brown LQ, Deschepper CF. Effects of thyroid hormones on angiotensinogen gene expression in rat liver, brain, and cultured cells. Endocrinology. 1992;130: 1231-1237.
  • Marchant C, Brown L, Sernia C. Renin-angiotensin system in thyroid dysfunction in rats. J Cardiovasc Pharmacol. 1993; 22: 449-455.
  • Kobori H, Ichihara A, Miyashita Y, Hayashi M, Saruta T. Local renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy. J Endocrinol. 1999; 160: 43-47.
  • Hu LW, Benvenuti LA, Liberti EA, Carneiro-Ramos MS, Barreto-Chaves ML. Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling. Am J Physiol Regul Integr Comp Physiol. 2003; 285: R1473-R1480.
  • Asahi T, Shimabukuro M, Oshiro Y, Yoshida H, Takasu N. Cilazapril prevents cardiac hypertrophy and postischemic myocardial dysfunction in hyperthyroid rats. Thyroid. 2001; 11: 1009-1015.
  • Carneiro-Ramos MS, Diniz GP, Nadu AP, Almeida J, Vieira RL, Santos RA i wsp. Blockage of angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation. Basic Res Cardiol. 2010; 105: 325-335.
  • Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML. Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol. 2009; 104: 653-667.
  • Araujo AS, Diniz GP, Seibel FE, Branchini G, Ribeiro MF, Brum IS i wsp. Reactive oxygen and nitrogen species balance in the determination of thyroid hormones-induced cardiac hypertrophy mediated by renin-angiotensin system. Mol Cell Endocrinol. 2011; 333: 78-84.
  • Wang B, Ouyang J, Xia Z. Effects of triiodo-thyronine on angiotensin-induced cardiomyocyte hypertrophy: reversal of increased beta-myosin heavy chain gene expression. Can J Physiol Pharmacol. 2006; 84: 935-941.
  • Fukuyama K, Ichiki T, Takeda K, Tokunou T, Iino N, Masuda S i wsp. Downregulation of vascular angiotensin II type 1 receptor by thyroid hormone. Hypertension. 2003; 41: 598-603.
  • Kobori H, Ichihara A, Miyashita Y, Hayashi M, Saruta T. Mechanism of hyperthyroidism-induced renal hypertrophy in rats. J Endocrinol. 1998; 159: 9-14.
  • Yonemoto T, Nishikawa M, Matsubara H, Mori Y, Toyoda N, Gondou A i wsp. Type 1 iodothyronine deiodinase in heart - effects of triiodothyronine and angiotensin II on its activity and mRNA in cultured rat myocytes. Endocr J. 1999; 46: 621-628.
  • Franci CR, Anselmo-Franci JA, McCann SM. Angiotensinergic neurons physiologically inhibit prolactin, growth hormone, and thyroid-stimulating hormone, but not adrenocorticoptropic hormone, release in ovariectomized rats. Peptides. 1997; 18: 971-976.
  • Pawlikowski M, Kunert-Radek J, Stępień H, Radek A. Effects of angiotensin II on proliferation of estrogen-induced rat pituitary tumor and human prolactinoma cells in vitro. Neuroendocrinol Lett. 1994; 16: 103-109.
  • Lachowicz-Ochędalska A, Rębas E, Kunert-Radek J, Fournie-Zaluski MC, Pawlikowski M. Angiotensins II and IV stimulate the activity of tyrosine kinases in estrogen-induced rat pituitary tumors Biochem Biophys Res Commun. 2002; 2297: 931-933.
  • Lachowicz A, Rębas E, Ochędalski T, Pawlikowski M. Angiotensin II changes inositol-1, 4, 5 -trisphosphate content in the pituitary and hypothalamus but not in cerebral cortex of the rat brain. Biol Signals. 1995; 4: 206-211.
  • Pawlikowski M, Grochal M, Kulig A, Zieliński K, Stępień H, Kunert-Radek J, Mucha S. The effect of angiotensin II receptor antagonists on diethylstilbestrolinduced vascular changes in the rat anterior pituitary gland: a quantitative evaluation. Histol Histopathol. 1996; 11: 909-913.
  • Pawlikowski M, Mełeń-Mucha G, Mucha S. The involvement of the reninangiotensin system in the regulation of cell proliferation in the rat endometrium. Cell Mol Life Sci. 1999; 55: 506-510.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.