PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 27 | 153-173
Article title

Biocontrol potential of trichoderma and yeast against post harvest fruit fungal diseases: A review

Content
Title variants
Languages of publication
EN
Abstracts
EN
Crop protection is vital to maintain high productivity and high quality of crops. Over the past years, people used different fungicides, herbicides and good agronomical practices to control fungal diseases and pests to increase productivity. However, extensive use of chemicals in controlling pests and diseases resulted in negative impacts on the environment, producing inferior quality and harming consumer health. In recent times, diverse approaches are being used to manage a variety of pathogens for control of plant diseases. Biological control is the alternative approach for disease management that is eco-friendly and reduces the amount of human contact with harmful chemicals and their residues. A variety of biocontrol agents including fungi and bacteria have been identified; In this regard, yeast and trichoderma species are the most researched microbes in biocontrol research area. But, despite the presence of many reports on biocontrol, practicability of the biocontrols requires effective adoption and a better understanding of the intricate interactions among the pathogen, plants and environment towards sustainable agriculture. To this end, this review attempts to find and compile previous works done on the role of trichoderma and yeast as a biocontrol agent against postharvest fungal pathogens. Moreover, this review analyzes the mechanisms of biocontrol activity, their means of application and future prospects on the use biogents and the challenges that encounter during the commercialization process.
Keywords
Year
Volume
27
Pages
153-173
Physical description
Contributors
author
  • Department of Biology, Assosa University, Assosa, Ethiopia
  • Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
  • Department of Chemistry, Bahir Dar University, Bahir Dar, Ethiopia
References
  • [1] Hasan, R. N., Ali, M. R., Shakier, S. M., Khudhair, A. M., Hussin, M. S., Kadum, Y. A., & Abbas, A. A. (2013). Antibacterial activity of aqueous and alcoholic extracts of Capsella Bursa against selected pathogenic bacteria. American Journal of BioScience, 1(1), 6-10.
  • [2] FAO, I., IMF, O., & UNCTAD, W. (2011). The World Bank, the WTO, IFPRI and the UN HLTF (2011). Price Volatility in Food and Agricultural Markets: Policy Responses. Rome, FAO.
  • [3] Janisiewicz, W. J., & Korsten, L. (2002). Biological control of postharvest diseases of fruits. Annual review of phytopathology, 40(1), 411-441.
  • [4] Monte, E. (2001). Understanding Trichoderma: between biotechnology and microbial ecology. International Microbiology, 4(1), 1-4.
  • [5] Andersen, B., & Thrane, U. (2006). Food-borne fungi in fruit and cereals and their production of mycotoxins. In Advances in Food Mycology (pp. 137-152). Springer, Boston, MA.
  • [6] Sanzani, S. M., Reverberi, M., & Geisen, R. (2016). Mycotoxins in harvested fruits and vegetables: Insights in producing fungi, biological role, conducive conditions, and tools to manage postharvest contamination. Postharvest Biology and Technology, 122, 95-105.
  • [7] Vitoratos, A., Bilalis, D., Karkanis, A., & Efthimiadou, A. (2013). Antifungal activity of plant essential oils against Botrytis cinerea, Penicillium italicum and Penicillium digitatum. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 86-92.
  • [8] Droby, S. (2006). Biological control of postharvest diseases of fruits and vegetables: difficulties and challenges. Phytopathologia Polonica, 39, 105-117.
  • [9] Mari, M., Martini, C., Spadoni, A., Rouissi, W., & Bertolini, P. (2012). Biocontrol of apple postharvest decay by Aureobasidium pullulans. Postharvest Biology and Technology, 73, 56-62.
  • [10] Baker, K. F., & Cook, R. J. (1974). Biological control of plant pathogens. WH Freeman and Company.
  • [11] Montesinos, E. (2003). Development, registration and commercialization of microbial pesticides for plant protection. International Microbiology, 6(4), 245-252.
  • [12] Sobowale, A. O., & Oyewole, O. B. (2008). Effect of lactic acid fermentation of cassava on functional and sensory characteristics of fufu flour. Journal of food processing and preservation, 32(4), 560-570.
  • [13] Montesinos, E., & Bonaterra, A. (2009). Microbial pesticides. Encyclopedia of microbiology, 3rd edn. Elsevier, New York, 110-120.
  • [14] Junaid, M., Adnan, M., Khan, N., Khan, N., & Ali, N. (2013). Plant Growth, Biochemical Characteristics And Heavy Metals Contents Of Medicago Sativa L., Brassica Juncea (L.) Czern. And Cicer Arietinum L. Fuuast Journal of Biology, 3(2), 95-103.
  • [15] Sharma, S. D., Kumar, P., & Yadav, S. K. (2014). Glomus–Azotobacter association affects phenology of mango seedlings under reduced soil nutrient supply. Scientia horticulturae, 173, 86-91.
  • [16] Dukare, A. S., Prasanna, R., Dubey, S. C., Nain, L., Chaudhary, V., Singh, R., & Saxena, A. K. (2011). Evaluating novel microbe amended composts as biocontrol agents in tomato. Crop protection, 30(4), 436-442.
  • [17] Liu, P., Luo, L., & Long, C. A. (2013). Characterization of competition for nutrients in the biocontrol of Penicillium italicum by Kloeckera apiculata. Biological control, 67(2), 157-162.
  • [18] Bonaterra, A., Badosa, E., Cabrefiga, J., Francés, J., & Montesinos, E. (2012). Prospects and limitations of microbial pesticides for control of bacterial and fungal pomefruit tree diseases. Trees, 26(1), 215-226.
  • [19] Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest biology and technology, 52(2), 137-145.
  • [20] Barkai-Golan, R. (2001). Postharvest diseases of fruits and vegetables: development and control. Copyright © 2001 Elsevier. ISBN 978-0-444-50584-2
  • [21] Alkan, N., & Fortes, A. M. (2015). Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens. Frontiers in plant science, 6, 889.
  • [22] Prusky, D., Alkan, N., Mengiste, T., & Fluhr, R. (2013). Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annual Review of Phytopathology, 51, 155-176.
  • [23] Spadaro, D., & Gullino, M. L. (2004). State of the art and future prospects of the biological control of postharvest fruit diseases. International journal of food microbiology, 91(2), 185-194.
  • [24] Suryawanshi, K. T. (2018). Development Of Disease Management Strategies For Minimal Fungicides Residue In Table Grapes (Doctoral dissertation, Indira Gandhi Krishi Vishwavidhyalaya, Raipur).
  • [25] Bastakoti, S., Belbase, S., Manandhar, S., & Arjyal, C. (2017). Trichoderma species as Biocontrol Agent against Soil Borne Fungal Pathogens. Nepal Journal of Biotechnology, 5(1), 39-45.
  • [26] de los Santos-Villalobos, S., Guzmán-Ortiz, D. A., Gómez-Lim, M. A., Délano-Frier, J. P., de-Folter, S., Sánchez-García, P., & Peña-Cabriales, J. J. (2013). Potential use of Trichoderma asperellum (Samuels, Liechfeldt et Nirenberg) T8a as a biological control agent against anthracnose in mango (Mangifera indica L.). Biological Control, 64(1), 37-44.
  • [27] Alvindia, D. G. (2018). The antagonistic action of Trichoderma harzianum strain DGA01 against anthracnose-causing pathogen in mango cv.‘Carabao’. Biocontrol science and technology, 28(6), 591-602.
  • [28] Marques, E., Martins, I., & Mello, S. C. M. D. (2018). Antifungal potential of crude extracts of Trichoderma spp. Biota Neotropica, 18(1). e20170418. http://dx.doi.org/10.1590/1676-0611-BN-2017-0418
  • [29] Devi, A. N., & Arumugam, T. (2005). Studies on the shelf life and quality of Rasthali banana as affected by postharvest treatments. Orissa J. Hortic, 33(2), 3-6.
  • [30] Batta, Y. A. (2007). Control of postharvest diseases of fruit with an invert emulsion formulation of Trichoderma harzianum Rifai. Postharvest Biology and technology, 43(1), 143-150.
  • [31] Sivakumar, D., Wijeratnam, R. W., Wijesundera, R. L. C., Marikar, F. M. T., & Abeyesekere, M. (2000). Antagonistic effect ofTrichoderma harzianum on postharvest pathogens of rambutan (Nephelium lappaceum). Phytoparasitica, 28(3), 240.
  • [32] Sharfuddin, R. Y., & Mohanka, N. A. (2012). In vitro antagonism of indigenous Trichoderma isolates against phytopathogen causing wilt of lentil. International Journal of Life Science & Pharma Research, 2, 195-202.
  • [33] Dar, G. H., Beig, M. A., Ahanger, F. A., Ganai, N. A., & Ahangar, M. A. (2011). Management of root rot caused by Rhizoctonia solani and Fusarium oxysporum in blue pine (Pinus wallichiana) through use of fungal antagonists. Asian J. Plant Pathol, 5(2), 62-67.
  • [34] Sahile, S., Sakhuja, P. K., Fininsa, C., & Ahmed, S. (2011). Potential antagonistic fungal species from Ethiopia for biological control of chocolate spot disease of faba bean. African Crop Science Journal, 19(3), 213-225.
  • [35] Valenzuela, N. L., Angel, D. N., Ortiz, D. T., Rosas, R. A., García, C. F. O., & Santos, M. O. (2015). Biological control of anthracnose by postharvest application of Trichoderma spp. on maradol papaya fruit. Biological Control, 91, 88-93.
  • [36] Admasu, W., Sahile, S., & Kibret, M. (2014). Assessment of potential antagonists for anthracnose (Colletotrichum gloeosporioides) disease of mango (Mangifera indica L.) in North Western Ethiopia (Pawe). Archives of Phytopathology and Plant Protection, 47(18), 2176-2186.
  • [37] Pathak, V. N. (1997). Mundkur Memorial Lecture-Post-harvest Fruit Pathology--Present Status and Future Possibilities. Indian Phytopathology, 50(2), 161-185.
  • [38] Qin, G., Tian, S., & Xu, Y. (2004). Biocontrol of postharvest diseases on sweet cherries by four antagonistic yeasts in different storage conditions. Postharvest biology and technology, 31(1), 51-58.
  • [39] Hernandez Montiel, L. G., Zulueta Rodriguez, R., Angulo, C., Rueda Puente, E. O., Quiñonez Aguilar, E. E., & Galicia, R. (2017). Marine yeasts and bacteria as biological control agents against anthracnose on mango. Journal of Phytopathology, 165(11-12), 833-840.
  • [40] da Cunha, T., Ferraz, L. P., Wehr, P. P., & Kupper, K. C. (2018). Antifungal activity and action mechanisms of yeasts isolates from citrus against Penicillium italicum. International journal of food microbiology, 276, 20-27.
  • [41] Lopes, M. R., Klein, M. N., Ferraz, L. P., da Silva, A. C., & Kupper, K. C. (2015). Saccharomyces cerevisiae: a novel and efficient biological control agent for Colletotrichum acutatum during pre-harvest. Microbiological research, 175, 93-99.
  • [42] Ferraz, L. P., da Cunha, T., da Silva, A. C., & Kupper, K. C. (2016). Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit. Microbiological research, 188, 72-79.
  • [43] Liu, J., Sui, Y., Wisniewski, M., Droby, S., & Liu, Y. (2013). Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International journal of food microbiology, 167(2), 153-160.
  • [44] Droby, S., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E., & Porat, R. (2002). Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology, 92(4), 393-399.
  • [45] El Ghaouth, A., Wilson, C. L., & Wisniewski, M. (2003). Control of postharvest decay of apple fruit with Candida saitoana and induction of defense responses. Phytopathology, 93(3), 344-348.
  • [46] Yang, Z., Cao, S., Cai, Y., & Zheng, Y. (2011). Combination of salicylic acid and ultrasound to control postharvest blue mold caused by Penicillium expansum in peach fruit. Innovative Food Science & Emerging Technologies, 12(3), 310-314.
  • [47] Janisiewicz, W. J., Jurick II, W. M., Vico, I., Peter, K. A., & Buyer, J. S. (2013). Culturable bacteria from plum fruit surfaces and their potential for controlling brown rot after harvest. Postharvest biology and technology, 76, 145-151.
  • [48] Kalogiannis, S., Tjamos, S. E., Stergiou, A., Antoniou, P. P., Ziogas, B. N., & Tjamos, E. C. (2006). Selection and evaluation of phyllosphere yeasts as biocontrol agents against grey mould of tomato. European journal of plant pathology, 116(1), 69-76.
  • [49] Long, C. A., Deng, B. X., & Deng, X. X. (2007). Commercial testing ofKloeckera apiculata, isolate 34-9, for biological control of postharvest diseases of citrus fruit. Annals of Microbiology, 57(2), 203.
  • [50] Vero, S., Garmendia, G., González, M. B., Bentancur, O., & Wisniewski, M. (2013). Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus× domestica). FEMS yeast research, 13(2), 189-199.
  • [51] Wang, Y., Tang, F., Xia, J., Yu, T., Wang, J., Azhati, R., & Zheng, X. D. (2011). A combination of marine yeast and food additive enhances preventive effects on postharvest decay of jujubes (Zizyphus jujuba). Food chemistry, 125(3), 835-840.
  • [52] Montero-Barrientos, M., Hermosa, R., Cardoza, R. E., Gutiérrez, S., & Monte, E. (2011). Functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum. Appl. Environ. Microbiol. 77(9), 3009-3016.
  • [53] Gal-Hemed, I., Atanasova, L., Komon-Zelazowska, M., Druzhinina, I. S., Viterbo, A., & Yarden, O. (2011). Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl. Environ. Microbiol. 77(15), 5100-5109.
  • [54] Nunes, C. A. (2012). Biological control of postharvest diseases of fruit. European Journal of Plant Pathology, 133(1), 181-196.
  • [55] Gbadeyan, F. A., Orole, O. O., & Gerard, G. (2016). Study of naturally sourced bacteria with antifungal activities. Int. J. Microbiol. Mycol 4(1), 9-16.
  • [56] Wisniewski, M., Droby, S., Norelli, J., Liu, J., & Schena, L. (2016). Alternative management technologies for postharvest disease control: the journey from simplicity to complexity. Postharvest Biology and Technology, 122, 3-10.
  • [57] Di Francesco, A., Martini, C., & Mari, M. (2016). Biological control of postharvest diseases by microbial antagonists: how many mechanisms of action? European Journal of Plant Pathology, 145(4), 711-717.
  • [58] Spadaro, D., & Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology, 47, 39-49.
  • [59] Zhang, J., & Zhou, J. M. (2010). Plant immunity triggered by microbial molecular signatures. Molecular Plant, 3(5), 783-793.
  • [60] Zhang, D., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2010). Efficacy of the antagonist Aureobasidium pullulans PL5 against postharvest pathogens of peach, apple and plum and its modes of action. Biological Control, 54(3), 172-180.
  • [61] Talibi, I., Boubaker, H., Boudyach, E. H., & Ait Ben Aoumar, A. (2014). Alternative methods for the control of postharvest citrus diseases. Journal of applied microbiology, 117(1), 1-17.
  • [62] Spadaro, D., & Gullino, M. L. (2004). State of the art and future prospects of the biological control of postharvest fruit diseases. International journal of food microbiology, 91(2), 185-194.
  • [63] Spadaro, D., & Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology, 47, 39-49.
  • [64] Chanchaichaovivat, A., Panijpan, B., & Ruenwongsa, P. (2008). Yeast biocontrol of a fungal plant disease: a model for studying organism interrelationships. Journal of biological education, 43(1), 36-40.
  • [65] Bencheqroun, S. K., Bajji, M., Massart, S., Labhilili, M., El Jaafari, S., & Jijakli, M. H. (2007). In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: evidence for the involvement of competition for nutrients. Postharvest Biology and Technology, 46(2), 128-135.
  • [66] Gálvez, A., Abriouel, H., Benomar, N., & Lucas, R. (2010). Microbial antagonists to food-borne pathogens and biocontrol. Current opinion in biotechnology, 21(2), 142-148.
  • [67] Romanazzi, G., Sanzani, S. M., Bi, Y., Tian, S., Martínez, P. G., & Alkan, N. (2016). Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 122, 82-94.
  • [68] Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual review of phytopathology, 48, 21-43.
  • [69] Vinale, F., Strakowska, J., Mazzei, P., Piccolo, A., Marra, R., Lombardi, N. & Lorito, M. (2016). Cremenolide, a new antifungal, 10-member lactone from Trichoderma cremeum with plant growth promotion activity. Natural product research, 30(22), 2575-2581.
  • [70] Mayo, S., Gutierrez, S., Malmierca, M. G., Lorenzana, A., Campelo, M. P., Hermosa, R., & Casquero, P. A. (2015). Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. Frontiers in Plant Science, 6, 685.
  • [71] Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species— opportunistic, avirulent plant symbionts. Nature reviews microbiology, 2(1), 43.
  • [72] Saravanakumar, K., Yu, C., Dou, K., Wang, M., Li, Y., & Chen, J. (2016). Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biological Control, 94, 37-46.
  • [73] Rao, H. Y., Rakshith, D., & Satish, S. (2015). Antimicrobial properties of endophytic actinomycetes isolated from Combretum latifolium Blume, a medicinal shrub from Western Ghats of India. Frontiers in biology, 10(6), 528-536.
  • [74] Yao, H., & Tian, S. (2005). Effects of pre-and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biology and Technology, 35(3), 253-262.
  • [75] Gajera, H., Domadiya, R., Patel, S., Kapopara, M., & Golakiya, B. (2013). Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system–a review. Curr Res Microbiol Biotechnol, 1(4), 133-142.
  • [76] Sadykova, V. S., Kurakov, A. V., Kuvarina, A. E., & Rogozhin, E. A. (2015). Antimicrobial activity of fungi strains of Trichoderma from Middle Siberia. Applied biochemistry and microbiology, 51(3), 355-361.
  • [77] Wisniewski, M., Biles, C., Droby, S., McLaughlin, R., Wilson, C., & Chalutz, E. (1991). Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii. I. Characterization of attachment to Botrytis cinerea. Physiological and Molecular Plant Pathology, 39(4), 245-258.
  • [78] El-Tarabily, K. A., & Sivasithamparam, K. (2006). Potential of yeasts as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Mycoscience, 47(1), 25-35.
  • [79] Banani, H., Spadaro, D., Zhang, D., Matic, S., Garibaldi, A., & Gullino, M. L. (2015). Postharvest application of a novel chitinase cloned from Metschnikowia fructicola and overexpressed in Pichia pastoris to control brown rot of peaches. International journal of food microbiology, 199, 54-61.
  • [80] Zhang, D., Spadaro, D., Valente, S., Garibaldi, A., & Gullino, M. L. (2012). Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens. International journal of food microbiology, 153(3), 453-464.
  • [81] Kim, P., & Chung, K. C. (2004). Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiology Letters, 234(1), 177-183.
  • [82] Mari, M., Bautista-Baños, S., & Sivakumar, D. (2016). Decay control in the postharvest system: Role of microbial and plant volatile organic compounds. Postharvest Biology and Technology, 122, 70-81.
  • [83] Morath, S. U., Hung, R., & Bennett, J. W. (2012). Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biology Reviews, 26(2-3), 73-83.
  • [84] Zhang, X., Li, B., Wang, Y., Guo, Q., Lu, X., Li, S., & Ma, P. (2013). Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Applied microbiology and biotechnology, 97(21), 9525-9534.
  • [85] Strobel, G., Singh, S. K., Riyaz-Ul-Hassan, S., Mitchell, A. M., Geary, B., & Sears, J. (2011). An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS microbiology letters, 320(2), 87-94.
  • [86] Abadias, M., Usall, J., Teixidó, N., & Viñas, I. (2003). Liquid formulation of the postharvest biocontrol agent Candida sake CPA-1 in isotonic solutions. Phytopathology, 93(4), 436-442.
  • [87] Karabulut, O. A., Romanazzi, G., Smilanick, J. L., & Lichter, A. (2005). Postharvest ethanol and potassium sorbate treatments of table grapes to control gray mold. Postharvest biology and technology, 37(2), 129-134.
  • [88] Blachinsky, D., Antonov, J., Bercovitz, A., El-ad, B., Feldman, K., Husid, A. & Keren‐Zur, M. (2007). Commercial applications of shemer for the control of pre-and post-harvest diseases. IOBC WPRS BULLETIN, 30(6/2), 75.
  • [89] Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43, 337-359.
  • [90] Pratella, G. C., Mari, M., Guizzardi, M., & Folchi, A. (1993). Preliminary studies on the efficiency of endophytes in the biological control of the postharvest pathogens Monilinia laxa and Rhizopus stolonifer in stone fruit. Postharvest Biology and Technology, 3(4), 361-368.
  • [91] Adeline, T. S. Y., & Sijam, K. (1999). Biological control of bacterial soft rot of cabbage. In Biological Control in the Tropics: Towards Efficient Biodiversity and Bioresource Management for Effective Biological Control: Proceedings of the Symposium on Biological Control in the Tropics. CABI Publishing, Wallingford, UK (pp. 133-134).
  • [92] Kefialew, Y., & Ayalew, A. (2008). Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango (Mangifera indica). Postharvest Biology and Technology, 50(1), 8-11.
  • [93] Lassois, L., de Bellaire, L. D. L., & Jijakli, M. H. (2008). Biological control of crown rot of bananas with Pichia anomala strain K and Candida oleophila strain O. Biological Control, 45(3), 410-418.
  • [94] Mikani, A., Etebarian, H. R., Sholberg, P. L., O’Gorman, D. T., Stokes, S., & Alizadeh, A. (2008). Biological control of apple gray mold caused by Botrytis mali with Pseudomonas fluorescens strains. Postharvest Biology and Technology, 48(1), 107-112.
  • [95] Morales, H., Sanchis, V., Usall, J., Ramos, A. J., & Marín, S. (2008). Effect of biocontrol agents Candida sake and Pantoea agglomerans on Penicillium expansum growth and patulin accumulation in apples. International journal of food microbiology, 122(1-2), 61-67.
  • [96] Cañamás, T. P., Viñas, I., Usall, J., Torres, R., Anguera, M., & Teixidó, N. (2008). Control of postharvest diseases on citrus fruit by preharvest applications of biocontrol agent Pantoea agglomerans CPA-2: Part II. Effectiveness of different cell formulations. Postharvest Biology and Technology, 49(1), 96-106.
  • [97] Benbow, J. M., & Sugar, D. (1999). Fruit surface colonization and biological control of postharvest diseases of pear by preharvest yeast applications. Plant Disease, 83(9), 839-844.
  • [98] Leibinger, W., Breuker, B., Hahn, M., & Mendgen, K. (1997). Control of postharvest pathogens and colonization of the apple surface by antagonistic microorganisms in the field. Phytopathology, 87(11), 1103-1110.
  • [99] Schena, L., Nigro, F., Pentimone, I., Ligorio, A., & Ippolito, A. (2003). Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biology and Technology, 30(3), 209-220.
  • [100] Lima, G., De Curtis, F., Castoria, R., & De Cicco, V. (2003). Integrated control of apple postharvest pathogens and survival of biocontrol yeasts in semi-commercial conditions. European Journal of Plant Pathology, 109(4), 341-349.
  • [101] Zhang, H., Wang, L., Dong, Y., Jiang, S., Cao, J., & Meng, R. (2007). Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biological Control, 40(2), 287-292.
  • [102] Tian, S., Qin, G., & Xu, Y. (2004). Survival of antagonistic yeasts under field conditions and their biocontrol ability against postharvest diseases of sweet cherry. Postharvest Biology and Technology, 33(3), 327-331.
  • [103] Nunes, C. A. (2012). Biological control of postharvest diseases of fruit. European Journal of Plant Pathology, 133(1), 181-196.
  • [104] Ippolito, A., Nigro, F., & Schena, L. (2004). Control of postharvest diseases of fresh fruits and vegetables by preharvest application of antagonistic microorganisms. Crop management and postharvest handling of horticultural products, 4, 1-30.
  • [105] S. V. Irtwange. (2004). Application of Biological Control Agents in Pre- and Postharvest Operations. Agricultural Engineering International: the CIGR Ejournal. Invited Overview No. 3. Vol. VIII.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-c7c9f705-830f-4ccd-897b-7d2037da3377
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.