PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 50 | 64-73
Article title

Analytical models for compact stars with a linear equation of state

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, we found two new classes of solutions to the Einstein-Maxwell system of equations for compact stars assuming an anisotropic pressure and a linear equation of state for the matter distribution within the framework of MIT-Bag Model with a particular form of the metric function. The exact solutions can be written in terms of elementary function in presence of an electromagnetic field. All the obtained models have a singularity in the charge density but not admit singularities in the matter and metric functions at the centre.
Discipline
Publisher

Year
Volume
50
Pages
64-73
Physical description
Contributors
  • Department of Basic Sciences, Maritime University of the Caribbean, Catia la Mar, Venezuela, mmf.umc@gmail.com
References
  • [1] Kuhfitting, P.K. (2011). Some remarks on exact wormhole solutions, Adv. Stud. Theor. Phys., 5, 365-367.
  • [2] Bicak, J. (2006). Einstein equations: exact solutions, Encyclopedia of Mathematical Physics, 2, 165-173.
  • [3] Malaver, M. (2013). Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9.
  • [4] Komathiraj, K., and Maharaj, S.D. (2008). Classes of exact Einstein-Maxwell solutions, Gen. Rel. Grav., 39, 2079-2093.
  • [5] Sharma, R., Mukherjee, S and Maharaj, S.D. (2001). General solution for a class of static charged stars, Gen. Rel. Grav., 33, 999-110.
  • [6] Schwarzschild, K. (1916). Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit, Math. Phys. Tech, 424-434.
  • [7] Tolman, R.C. (1939). Static Solutions of Einstein's Field Equations for Spheres of Fluid, Phys. Rev., 55, 364-373.
  • [8] Oppenheimer, J.R. and Volkoff, G. (1939). On massive neutron cores, Phys. Rev., 55, 374-381.
  • [9] Chandrasekhar, S. (1931). Mass of Ideal White Dwarfs, Astrophys. J., 74, 81-82.
  • [10] Baade, W., and Zwicky, F. (1934). Cosmic Rays from Super-Novae, Proc. Nat. Acad. Sci. U. S., (20), 259-263.
  • [11] Komathiraj, K., and Maharaj, S.D.(2007). Analytical models for quark stars, Int. J. Mod. Phys., D16, pp. 1803-1811.
  • [12] Herrera, L., and Santos, N.O. (1997), Phys. Rep.286, 53.
  • [13] Cosenza, M., Herrera, L., Esculpi, M. and Witten, L.(1981), J. Math. Phys., 22(1), 118.
  • [14] Gokhroo, M.K., and Mehra. A.L. (1994). Anisotropic spheres with variable energy density in general relativity, Gen. Relat. Grav., 26(1), 75-84.
  • [15] Herrera, L. (1992), Phys. Lett., A165, 206.
  • [16] Sokolov. A.I. (1980), Sov. Phys. JETP., 52, 575
  • [17] Herrera, L., Ruggeri, G.J and Witten. L. (1979), Astrophys. J., 234, 1094.
  • [18] Herrera, L., and Ponce de Leon. J. (1985), J. Math. Phys., 26, 2018.
  • [19] Herrera, L., and Santos N.O. (1998), J. Math. Phys., 39, 3817 .
  • [20] Bondi.H.(1992), Mon .Not. R. Astron. Soc., 259, 365.
  • [21] Malaver, M. (2009). Análisis comparativo de algunos modelos analíticos para estrellas de quarks, Revista Integración, 27, 125-133.
  • [22] Thirukkanesh, S., and Maharaj, S.D. (2008). Charged anisotropic matter with linear equation of state, Class. Quantum Gravity, 25, 235001.
  • [23] Thirukkanesh, S., and Ragel, F.C. (2013). A class of exact strange quark star model, PRAMANA Journal of physics, 81(2), 275-286.
  • [24] Feroze, T. and Siddiqui, A. (2011). Charged anisotropic matter with quadratic equation of state, Gen. Rel. Grav., 43, 1025-1035.
  • [25] Malaver, M. (2014). Strange Quark Star Model with Quadratic Equation of State, Frontiers of Mathematics and Its Applications., 1(1), 9-15.
  • [26] Malaver, M. (2015). Relativistic Modeling of Quark Stars with Tolman IV Type Potential, International Journal of Modern Physics and Application., 2(1), 1-6.
  • [27] Takisa, P.M., and Maharaj, S.D. (2013). Some charged polytropic models, Gen. Rel. Grav., 45, 1951-1969.
  • [28] Thirukkanesh, S., and Ragel, F.C. (2012). Exact anisotropic sphere with polytropic equation of state, PRAMANA Journal of physics, 78(5), 687-696.
  • [29] Malaver, M. (2013). Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal of Astronomy and Astrophysics, 1(4), 41-46.
  • [30] Malaver, M. (2013). Regular model for a quark star with Van der Waals modified equation of state, World Applied Programming., 3, 309-313.
  • [31] Raghoonundun, A., and Hobill, D. (2015). Possible physical realizations of the Tolman VII solution, Physical Review D 92, 124005.
  • [32] Durgapal, M.C., and Bannerji, R. (1983). New analytical stellar model in general relativity, Phys. Rev. D27, 328-331.
  • [33] Feroze, T,. and Siddiqui, A. (2014). Some exact solutions of the Einstein-Maxwell equations with a quadratic equation of state, Journal of the Korean Physical Society, 65(6), 944-947.
  • [34] Sunzu, J.M, Maharaj, S.D and Ray, S. (2014). Astrophysics. Space. Sci. 354, 517- 524.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-c6b53fc2-7655-4cf5-bb11-a81b0dbdf7f5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.