PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 100 | 248-253
Article title

On eigenvectors associated to a multiple eigenvalue

Content
Title variants
Languages of publication
EN
Abstracts
EN
If all roots of the characteristic polynomial of a matrix have distinct values, then the Faddeev-Sominsky’s algorithm gives the corresponding eigenvectors. Here we exhibit the method of Gower to construct the proper vectors associated to a multiple eigenvalue.
Discipline
Year
Volume
100
Pages
248-253
Physical description
Contributors
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
References
  • [1] G. Nakos, D. Joyner, Linear algebra with applications, Brooks / Cole Pub., London (1998).
  • [2] U. J. J. Leverrier, Sur les variations séculaires des éléments elliptiques des sept planétes principals. J. de Math. Pures Appl. Série 1, 5 (1840) 220-254.
  • [3] H. Takeno, A theorem concerning the characteristic equation of the matrix of a tensor of the second order, Tensor NS 3 (1954) 119-122.
  • [4] E. B. Wilson, J. C. Decius, P. C. Cross, Molecular vibrations, Dover, New York (1980) 216-217.
  • [5] I. Guerrero-Moreno, J. López-Bonilla, J. Rivera-Rebolledo, Leverrier-Takeno coefficients for the characteristic polynomial of a matrix. J. Inst. Eng. (Nepal) 8(1-2) (2011) 255-258.
  • [6] D. K. Faddeev, I. S. Sominsky, Collection of problems on higher algebra, Moscow (1949).
  • [7] V. N. Faddeeva, Computational methods of linear algebra, Dover, New York (1959) Chap. 3.
  • [8] D. K. Faddeev, Methods in linear algebra, W. H. Freeman, San Francisco, USA (1963).
  • [9] J. H. Caltenco, J. López-Bonilla, R. Peña-Rivero, Characteristic polynomial of A and Faddeev’s method for A-1. Educatia Matematica 3(1-2) (2007) 107-112.
  • [10] A. Domínguez-Pacheco, J. López-Bonilla, S. Vidal-Beltrán, The inverse matrix and eigenvalue problem via the Leverrier-Faddeev method. Prespacetime Journal 9(2) (2018) 137-141.
  • [11] J. López-Bonilla, R. López-Vázquez, S. Vidal-Beltrán, Trace of the Laplace transform of exp(tA), Asia Mathematika 2(1) (2018) 1-4.
  • [12] B. Hanzon, R. Peeters, Computer algebra in systems theory, Dutch Institute of Systems and Control, Course Program 1999-2000.
  • [13] J. C. Gower, A modified Leverrier-Faddeev algorithm for matrices with multiple eigenvalues. Linear Algebra and its Applications 31(1) (1980) 61-70.
  • [14] Shui-Hung Hou, On the Leverrier-Faddeev algorithm, Electronic Proc. of Asia Tech. Conf. in Maths. (1998).
  • [15] Shui-Hung Hou, A simple proof of the Leverrier-Faddeev characteristic polynomial algorithm. SIAM Rev. 40(3) (1998) 706-709.
  • [16] J. López-Bonilla, D. Romero-Jiménez, A. Zaldívar-Sandoval, Laplace transform of matrix exponential function, Prespacetime Journal 6(12) (2015) 1410-1413.
  • [17] J. M. Souriau, Une method pour la decomposition spectrale et l’inversion des matrices, C. R. Acad. Sci. Paris 227 (1948) 1010-1011.
  • [18] J. S. Frame, A simple recursion formula for inverting a matrix, Bull. Amer. Math. Soc. 55 (1949) 1045.
  • [19] A. S. Householder, The theory of matrices in numerical analysis, Blaisdell, New York (1964).
  • [20] G. Helmberg, P. Wagner, G. Veltkamp, On Faddeev-Leverrier’s method for the computation of the characteristic polynomial of a matrix and of eigenvectors, Linear Algebra and its Applications 185 (1993) 219-233.
  • [21] F. R. Gantmacher, Matrix theory, Chelsea, New York (1959).
  • [22] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Stand. 45(4) (1950) 255-282.
  • [23] C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bur. Stand. 49(1) (1952) 33-53.
  • [24] L. Komzsik, The Lanczos method: Evolution and application, SIAM, Philadelphia, USA (2003).
  • [25] G. Leija-Hernández, J. López-Bonilla, R. López-Vázquez, S. Vidal-Beltrán, The Lanczos method. World Scientific News 96 (2018) 208-216.
  • [26] B. Gelbaum, An algorithm for the minimal polynomial of a matrix, Am. Math. Monthly 90(1) (1983) 43-44.
  • [27] S. Bialas, M. Bialas, An algorithm for the calculation of the minimal polynomial. Bull. Polish Acad. Sci. (Technical Sci.) 56(4) (2008) 391-393.
Document Type
short_communication
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-c5045a42-6249-4d12-9b61-f7d1a04f13da
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.