Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2005 | 5 | 3 | 171-182

Article title

Utrata heterozygotyczności w nowotworach mózgu pochodzenia zarodkowego u dzieci

Content

Title variants

EN
Loss of heterozygosity in paediatric embryonal brain tumours

Languages of publication

EN PL

Abstracts

EN
Embryonal tumours, the most common group of malignant solid tumours in children consist about 12-25% of all brain tumours of childhood. The most frequent types are: medulloblastoma (MB), supratentorial primitive neuroectodermal tumour (sPNET) and atypical teratoid/rhabdoid tumour (AT/RT). The loss of genetic material in embryonal tumours is the most often described abnormality, which may be confirmed by loss of heterozygosity analysis (LOH). This method is used to identifying regions harboring putative suppressor genes. 35 children (18 male and 17 female), aged from one year to 13 years were included in this study. There were 26 MB, six sPNETs and three AT/RTs. DNA isolated from tumour tissues and blood samples (control) was amplified in polymerase chain reaction (PCR) with polymorphic markers. Molecular analyses were performed for 35 primary and 12 recurrent tumours. LOH was found in 21 primary tumours (60%). In 14 cases no alteration for all analysed region was confirmed. LOH was detected most often on chromosomes 17p, 22q and 10q. There was no alterations on chromosomes 1p, 1q and 5q. Progression of the molecular changes occurred in one case of recurrent medulloblastoma. LOH on 10q and 17p was found in both primary and recurrent tumour, while losses on 16p and 16q occurred only in the recurrent tumour. The occurrence of LOH in the particular types of tumours is quite different and not specific. Progression of molecular changes in recurrent tumors is rare event and could be connected with radiotherapy.
PL
Nowotwory mózgu pochodzenia zarodkowego są najliczniejszą grupą złośliwych nowotworów litych u dzieci, u których stanowią około 12-25% wszystkich rozrostów nowotworowych zlokalizowanych w ośrodkowym układzie nerwowym (OUN). Najczęściej rozpoznawaną jednostką z tej grupy nowotworów jest rdzeniak (MB), nieco rzadziej nadnamiotowy prymitywny nowotwór neuroektodermalny (sPNET) oraz atypowy nowotwór teratoidny/rabdoidny (AT/RT). Utrata materiału genetycznego jest w tych nowotworach częstym zjawiskiem, które można stwierdzić m.in. dzięki ocenie obecności utraty heterozygotyczności (loss of heterozygosity, LOH). Wykorzystywane jest ono do identyfikacji regionów chromosomalnych mogących zawierać geny supresorowe transformacji nowotworowej. Analizie poddano materiał pochodzący od 35 dzieci (17 dziewcząt i 18 chłopców) w wieku 1-13 lat. Wśród badanych nowotworów znajdowało się 26 MB, 6 sPNET i 3 AT/RT. Badana grupa obejmowała 35 przypadków nowotworów pierwotnych i 12 przypadków nowotworów nawrotowych. DNA, wyizolowany z tkanek nowotworowych oraz z leukocytów krwi obwodowej (materiał kontrolny), powielano podczas reakcji łańcuchowej polimerazy (polymerase chain reaction, PCR) przy użyciu syntetycznych starterów oligonukleotydowych. W grupie nowotworów pierwotnych LOH stwierdzono w 21 przypadkach (60%). W 14 przypadkach nie potwierdzono LOH w żadnym z badanych obszarów. Najwięcej przypadków LOH odnotowano na chromosomach 17p, 22q i 10q, natomiast w żadnym przypadku nie stwierdzono LOH na chromosomach 1p, 1q i 5q. W jednym przypadku nowotworu nawrotowego zdiagnozowano progresję zmian molekularnych. W nowotworze pierwotnym LOH obecna była na chromosomie 10q i 17p, z kolei w nowotworze nawrotowym dodatkowe obszary delecji obejmowały oba ramiona chromosomu 16. LOH występuje z różną częstością w poszczególnych typach histologicznych nowotworów pochodzenia zarodkowego i w większości przypadków nie ma charakteru zmian swoistych. Progresja zmian molekularnych w nawrotowych nowotworach pochodzenia zarodkowego jest zjawiskiem wyjątkowo rzadkim i może być następstwem radioterapii.

Discipline

Year

Volume

5

Issue

3

Pages

171-182

Physical description

Contributors

  • Zakład Patologii Molekularnej i Neuropatologii Katedry Onkologii Uniwersytetu Medycznego w Łodzi, ul. Czechosłowacka 8/10, 92-216 Łódź
  • Zakład Patologii Molekularnej i Neuropatologii Katedry Onkologii Uniwersytetu Medycznego w Łodzi, ul. Czechosłowacka 8/10, 92-216 Łódź

References

  • 1. Gatta G., Capocaccia R., Coleman M.P. i wsp.: Childhood cancer survival in Europe and the United States. Cancer 2002; 95: 1767-1772.
  • 2. Roberts R.O., Lynch C.F., Jones M.P., Hart M.N.: Medul-loblastoma: a population-based study of 532 cases. J. Neu-ropathol. Exp. Neurol. 1991; 50: 134-144.
  • 3. Kleihues P., Cavenee W.K.: Pathology and genetics of tumors of the nervous system. IARC Press, Lyon 2000.
  • 4. Avet-Loiseau H., Venaut A.M., Terrier-Lacombe M.J. i wsp.: Comparative genomic hybridization detects many recurrent imbalances in central nervous system primitive neuroectodermal tumours in children. Br. J. Cancer 1999; 79: 1843-1847.
  • 5. Bayani J., Zielenska M., Marrano P i wsp.: Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumours by using conventional banding, comparative genomic hybridization, and spectral karyotyping. J. Neurosurg. 2000; 93: 437-448.
  • 6. Bigner S.H., McLendon R.E., Fuchs H. iwsp.: Chromosomal characteristics of childhood brain tumours. Cancer Genet. Cytogenet. 1997; 97: 125-134.
  • 7. Dahmen R.R, Koch A., Denkhaus D. i wsp.: Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas. Cancer Res. 2001; 61: 7039-7043.
  • 8. Huang H., Mahler-Araujo B.M., Sankila A. i wsp.: APC mutations in sporadic medulloblastomas. Am. J. Pathol. 2000; 156: 433-437.
  • 9. Pomeroy S.L., Tamayo P., Gaasenbeek M. i wsp.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002; 415: 436-442.
  • 10. Russo C., Pellarin M., Tingby O. i wsp.: Comparative genomic hybridization in patients with supratentorial and infratentorial primitive neuroectodermal tumours. Cancer 1999; 86: 331-339.
  • 11. Yin X.L., Pang J.C., Liu Y.H. i wsp.: Analysis of loss of heterozygosity on chromosomes 10q, 11, and 16 in medulloblastomas. J. Neurosurg. 2001; 94: 799-805.
  • 12. Yokota N., Nishizawa S., Ohta S. i wsp.: Role of Wnt pathway in medulloblastoma oncogenesis. Int. J. Cancer 2002: 101: 198-201.
  • 13. Thiagalingam S., Laken S., Willson J.K.V. i wsp.: Mechanisms underlying losses of heterozygosity in human colorectal cancers. Proc. Natl. Acad. Sci. 2001; 98: 2698-2702.
  • 14. Biegel J.A., Janss A.J., Raffel C. i wsp.: Prognostic significance of chromosome 17p deletions in childhood primitive neuroectodermal tumours (medulloblastomas) of the central nervous system. Clin. Cancer Res. 1997; 3:473-478.
  • 15. Albrecht S., von Deimling A., Pietsch T i wsp.: Microsatellite analysis of loss of heterozygosity on chromosomes 9q, 11p and 17p in medulloblastomas. Neuropathol. Appl. Neurobiol. 1994; 20: 74-81.
  • 16. Burnett M.E., White E.C., Sih S. i wsp.: Chromosome arm 17p deletion analysis reveals molecular genetic heterogeneity in supratentorial and infratentorial primitive neuroectodermal tumours of the central nervous system. Cancer Genet. Cytogenet. 1997; 97: 25-31.
  • 17. Gilbertson R., Wickramasinghe C., Hernan R. i wsp.: Clinical and molecular stratification of disease risk in medulloblastoma. Br. J. Cancer. 2001; 85: 705-712.
  • 18. Burns A.S., Jaros E., Cole M. i wsp.: The molecular pathology of p53 in primitive neuroectodermal tumours of the central nervous system. Br. J. Cancer 2002; 86: 1117-1123.
  • 19. Scheurlen W.G., Schwabe G.C., Seranski P. i wsp.: Mapping of the breakpoints on the short arm of chromosome-17 in neoplasms with an i (17q). Genes Chromosomes Cancer 1999; 25: 230-240.
  • 20. Steichen-Gersdorf E., Baumgartener M., Kreczy A. i wsp.: Deletion mapping on chromosome 17p in medulloblastoma. Br. J. Cancer 1997; 76: 1284-1287.
  • 21. Biegel J., Burk C.D., Barr F.G., Emanuel G.S.: Evidence for a 17p tumour related locus distinct from p53 in paediatric primitive neuroectodermal tumours. Cancer Res. 1992; 52: 3391-3395.
  • 22. Cogen PH.: Prognostic significance of molecular genetic markers in childhood brain tumours. Pediatr. Neurosurg. 1991-92; 17: 245-250.
  • 23. McDonald J.D., Daneshvar L., Willert J.R. i wsp.: Physical mapping of chromosome 17p13.3 in the region of a putative tumour suppressor gene important in medulloblastoma. Genomics 1994; 23: 229-232.
  • 24. Felix C.A., Slavc I., Dunn M. i wsp.: p53 gene mutations in paediatric brain tumours. Med. Pediatr. Oncol. 1995; 25:431-436.
  • 25. Phelan C.M., Liu L., Ruttledge M.H. i wsp.: Chromosome 17 abnormalities and lack of TP53 mutations in paediatric central nervous system tumours. Hum. Genet. 1995; 96: 684-690.
  • 26. Cvekl A. Jr, Zavadil J., Birshtein B.K. i wsp.: Analysis of transcripts from 17p13.3 in medulloblastoma suggests ROX/MNT as a potential tumour suppressor gene. Eur. J. Cancer 2004; 40: 2525-2532.
  • 27. Sommer A., Waha A., Tonn J. i wsp.: Analysis of the Max-binding protein MNT in human medulloblastomas. Int. J. Cancer 1999; 82: 810-816.
  • 28. Rood B.R., Zhang H., Weitman D.M., Cogen PH.: Hypermethylation of HIC-1 and 17p allelic loss in medulloblastoma. Cancer Res. 2002; 62: 3794-3797.
  • 29. Waha A., Waha A., Koch A. i wsp.: Epigenetic silencing of the HIC-1 gene in human medulloblastomas. J. Neuropathol. Exp. Neurol. 2003; 62: 1192-1201.
  • 30. Waha A., Koch A., Hartmann W. i wsp.: Analysis of HIC-1 methylation and transcription in human ependymomas. Int. J. Cancer 2004; 110: 542-549.
  • 31. De Smaele E., Di Marcotullio L., Ferretti E. i wsp.: Chromosome 17p deletion in human medulloblastoma: a missing checkpoint in the Hedgehog pathway. Cell Cycle 2004; 3: 1263-1266.
  • 32. Di Marcotullio L., Ferretti E., De Smaele E. i wsp.: REN (KCTD11) is a suppressor of Hedgehog signaling and is deleted in human medulloblastoma. Proc. Natl. Acad. Sci. 2004; 101: 10833-10838.
  • 33. Scheurlen W.G., Seranski P., Mincheva A. i wsp.: High-resolution deletion mapping of chromosome arm 17p in childhood primitive neuroectodermal tumours reveals a common chromosomal disruption within the Smith-Magenis region, an unstable region in chromosome band 17p11.2. Genes Chromosomes Cancer 1997; 18: 50-58.
  • 34. Thomas G.A., Raffel C.: Loss of heterozygosity on 6q, 16q and 17p in human central nervous system primitive neuroectodermal tumors. Cancer Res. 1991; 51: 639-643.
  • 35. Bhattacharjee M.B., Armstrong D.D., Vogel H. i wsp: Cytogenetic analysis of 120 primary paediatric brain tumours and literature review. Cancer Genet. Cytogenet. 1997; 97: 39-53.
  • 36. Michiels E.M., Weiss M.M., Hoovers J.M. i wsp.: Genetic alterations in childhood medulloblastoma analysed by comparative genomic hybridization. J. Pediatr. Hematol. Oncol. 2002; 24: 205-210.
  • 37. Reardon D.A., Michalkiewicz E., Boyett J.M. i wsp.: Extensive genomic abnormalities in childhood medulloblastoma by comparative genomic hybridization. Cancer Res. 1997: 57: 4042-4047.
  • 38. Shlomit R., Ayala A.G., Michal D. i wsp.: Gains and losses of DNA sequences in childhood brain tumours analysed by comparative genomic hybridization. Cancer Genet. Cytogenet. 2000; 121: 67-72.
  • 39. Blaeker H., Rasheed B.K., McLendon R.E. i wsp.: Microsatellite analysis of childhood brain tumours. Genes Chromosomes Cancer 1996; 15: 54-63.
  • 40. Rubin J.B., Rowitch D.H.: Medulloblastoma: a problem of developmental biology. Cancer Cell 2002; 2: 7-8.
  • 41. Batra S.K., McLendon R.E., Koo J.S. i wsp.: Prognostic implications of chromosome 17p deletions in human medulloblastomas. J. Neurooncol. 1995; 24: 39-45.
  • 42. Emadian S.M., McDonald J.D., Gerken S.C., Fults D.: Correlation of chromosome 17p loss with clinical outcome in medulloblastoma. Clin. Cancer Res. 1996; 2:1559-1564.
  • 43. Jung H.L., Wang K.C., Kim S.K. i wsp.: Loss of heterozygosity analysis of chromosome 17p. 13.1-13.3 and its correlation with clinical outcome in medulloblastomas. J. Neurooncol. 2004; 67: 41-46.
  • 44. Biegel J.A., Fogelgren B., Zhou J.Y. i wsp.: Mutations of the INI1 rhabdoid tumour suppressor gene in medulloblas-tomas and primitive neuroectodermal tumours of the central nervous system. Clin. Cancer Res. 2000; 6:2759-2763.
  • 45. Biegel J.A., Tan L., Zhang F. i wsp: Alterations of the hSNF5/INI1 gene in central nervous system atypical teratoid/rhabdoid tumours and renal and extrarenal rhabdoid tumours. Clin. Cancer Res. 2002; 8: 3461-3467.
  • 46. Sevenet N., Lellouch-Tubiana A., SchoefieldD. iwsp.: Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype-phenotype correlations. Hum. Mol. Genet. 1999; 8: 2359-2368.
  • 47. Rickert C.H., Paulus W.: Chromosomal imbalances detected by comparative genomic hybridisation in atypical teratoid/rhabdoid tumours. Child’s Nerv. Syst. 2004; 20: 221-224.
  • 48. Wharton S.B., Wardle C., Ironside J.W. i wsp.: Comparative genomic hybridisation and pathological findings in atypical teratoid/rhabdoid tumour of the central nervous system. Neuropathol. Appl. Neurobiol. 2003; 29: 254-261.
  • 49. Biegel J.A., Rorke L.B., Packer R.J. i wsp.: Isochromosome 17q in primitive neuroectodermal tumours of the central nervous system. Genes Chromosomes Cancer 1989; 1: 139-147.
  • 50. Biegel J.A., Zhou J.Y., Rorke L.B. i wsp.: Germline and acquired mutations of INI1 in atypical teratoid and rhabdoid tumours. Cancer Res. 1999; 59: 74-79.
  • 51. Ahuja N., Mohan A.L., Li Q. i wsp.: Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res. 1997; 57: 3370-3374.
  • 52. Bello M.J., Leone P.E., Nebreda P. i wsp.: Allelic status of chromosome 1 in neoplasms of the nervous system. Cancer Genet. Cytogenet. 1995; 83: 160-164.
  • 53. Kraus J.A., Koch A., Albrecht S. i wsp.: Loss of heterozygosity at locus F13B on chromosome 1q in human medulloblastoma. Int. J. Cancer 1996; 67: 11-15.
  • 54. Pietsch T, Koch A., Wiestler O.D.: Molecular genetic studies in medulloblastomas: evidence for tumour suppressor genes at the chromosomal regions 1q31-32 and 17p13. Klin. Padiatr. 1997; 209: 150-155.
  • 55. Sulman E.P., White P.S., Brodeur G.M.: Genomic annotation of the meningioma tumour suppressor locus on chromosome 1p34. Oncogene 2004; 23: 1014-1020.
  • 56. Smyth I., Narang MA, Evans T i wsp.: Isolation and characterization of human patched 2 (PTCH2), a putative tumour suppressor gene in basal cell carcinoma and medul-loblastoma on chromosome 1p32. Hum. Mol. Genet. 1999; 8: 291-297.
  • 57. Agarwala S., Sanders TA., Ragsdale C.W: Sonic hedgehog control of size and shape in midbrain pattern formation. Science 2001; 291: 2147-2150.
  • 58. Roberts P., Chumas P.D., Picton S. i wsp.: A review of the cytogenetics of 58 paediatric brain tumours. Cancer Genet. Cytogenet. 2001; 131: 1-12.
  • 59. Huang H., Mahler-Araujo B.M., Sankila A. i wsp.: APC mutations in sporadic medulloblastomas. Am. J. Pathol. 2000; 156: 433-437.
  • 60. Eberhart C.G., Kratz J.E., Schuster A. i wsp.: Comparative genomic hybridization detects an increased number of chromosomal alterations in large cell/anaplastic medulloblastomas. Brain Pathol. 2002; 12: 36-44.
  • 61. Leonard J.R., Cai D.X., Rivet D.J. i wsp.: Large cell/anaplastic medulloblastomas and medullomyoblastomas: clin-icopathological and genetics features. J. Neurosurg. 2001; 95: 82-88.
  • 62. Eberhart C.G., Burger P.C.: Anaplasia and grading in medulloblastomas. Brain Pathol. 2003; 13: 376-385.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-c412c65c-1640-4651-9aa6-0d29d8bc7435
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.