Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2022 | 27 | 217-227

Article title

SYNTHESIS OF NEW CHITOSAN-CARBONATE HYDROXYAPATITE COMPOSITES WITH POTENTIAL APPLICATION IN BONE TISSUE ENGINEERING – PHYSICOCHEMICAL ANALYSIS

Content

Title variants

Languages of publication

EN

Abstracts

EN
The subject of this study was the synthesis of 12 chitosan-hydroxyapatite (CH:HA) composites with different contents of carbonate ions (CO3 2-), in two weight ratios of CH to HA (30:70 and 50:50), and two viscosities of CH (low [L] and high [H]). The method of direct co-precipitation of the introduced reagents was used. The structure of the obtained materials was characterised by Fourier-transform infrared (FT-IR) spectroscopy, powder X-ray diffraction, and scanning electron microscopy. The FT-IR spectra revealed the bands and ranges of the characteristic bands for CH and HA. The presence of CO3 2- introduced into the structure of the obtained composites was identified by infrared spectroscopy. A reduction in the size of HA unit cells was observed in the obtained CH:HA biocomposites, in materials with a higher content of incorporated CO3 2-. The obtained nanomaterials are similar to natural bone tissue. Future research will focus on the evaluation of the obtained materials as a drug delivery system.

Contributors

  • Student scientific group ‘Spectrum’ Medical University of Warsaw
  • Department of Analytical Chemistry and Biomaterials, Medical University of Warsaw,
  • Department of Analytical Chemistry and Biomaterials, Analytical Group, Medical University of Warsaw

References

  • [1] GBD; (2015) Global, regional, and national age–sex specific all-cause and causespecific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study. Lancet 385, 117-71.
  • [2] Chan GK, Duque G; (2002) Age-related bone loss: old bone, new facts. Gerontology 48, 62-71. DOI:10.1159/000048929
  • [3] Siddiqui HA, Pickering KL, Mucalo MR; (2018) A review on the use of hydroxyapatite-carbonaceous structure composites in bone replacement materials for strengthening purposes. Materials, 11, 1813. DOI:10.3390/ma11101813
  • [4] Murugan R, Ramakrishna S; (2004) Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials Vol. 25, 3829–3835. DOI:10.1016/j.biomaterials.2003.10.016
  • [5] Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan K; (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 1, 1-4. DOI:10.1016/j.ijbiomac.2010.03.015
  • [6] Kashirina A, Yao Y, Liu Y, Leng J; (2019) Biopolymers for bone substitutes: a review. Biomater Sci 10, 3961-3983. DOI:10.1039/c9bm00664h
  • [7] Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino W; (2014) Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci, Mater Med 25: 2445-2461. DOI:10.1007/s10856-014-5240-2
  • [8] Amini AR, Laurencin CT, Nukavarapu SP; (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363-408. DOI:10.1615/critrevbiomedeng.v40.i5.10
  • [9] Mallick K; (2014) Bone substitute biomaterials, Elsevier, Cambridge.
  • [10] Brahimi S, Ressler A, Boumchedda K, Hamidouche M, Kenzour A, Djafar R, Antunović M, Bauer L, Hvizdoś P, Ivanković H; (2022) Preparation and characterization of biocomposites based on chitosan and biomimetic hydroxyapatite derived from natural phosphate rocks. Mat Chem Phys, 276, 125421. DOI:10.1016/j.matchemphys.2021.125421
  • [11] Fernandez de Grado G, Keller L, Idoux-Gillet Y, Wagner Q, Musset A, Benkirane- Jessel N, Bornert F, Offner D; (2018) Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 9, 1-18. DOI:10.1177/2041731418776819
  • [12] Sobczak A, Kowalski Z; (2007) Materiały Hydroksyapatytowe stosowane w implantologii. Czas Tech, Wydawnictwo PK, 149-158.
  • [13] Szatkowski T, Kołodziejczak-Radzimska A, Zdarta J, Szwarc-Rzepka K, Paukszta D, Wyskokowski M, Ehrlich H, Jesionowski T; (2015) Synthesis and characterization of hydroxyapatite/chitosan composites. Physicochem Probl Miner Process 51, 575-585. DOI:10.5277/ppmp150217
  • [14] Daculsi G; (1998) Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials 19, 1473-1478. DOI:10.1016/s0142-9612(98)00061-1
  • [15] Koshino T, Murase T, Takagi T, Saito T; (2001) New bone formation around porous hydroxyapatite wedge implanted in opening wedge high tibial osteotomy in patients with osteoarthritis. Biomaterials 22, 1579-1582. DOI:10.1016/s0142-9612(00)00318-5
  • [16] Synowiecki J, Al-Khateeb NA; (2003) Production, properties, and some new applications of chitin and its derivatives. Crit Rev Food Sci Nutr 43, 145-171.
  • [17] Klinger C, Żółtowska-Aksamitowska S, Wysokowski M, Tsurkan MV, Galli R, Petrenko I, Machałowski T, Ereskovsky A, Martinović R, Muzychka L, Smolii O, Bechmann N, Ivanenko V, Schupp P, Jesionowski T, Giovine M, Joseph Y, Bornstein S, Voronkina A, Ehrlich H; (2019). Express Method for Isolation of Ready-to-Use 3D Chitin Scaffolds from Aplysinaarcheri (Aplysineidae: Verongiida) Demosponge. Marine Drugs 17, 131. DOI:10.3390/md1702013
  • [18] Fadlaoui S, El Asri O, Mohammed L, Sihame A, Omari A, Melhaoui M; (2019) Isolation and characterization of chitin from shells of the freshwater crab Potamon algeriense. Prog Chem Appl Chitin Deriv 24, 23-35. DOI:10.15259/PCACD.24.002
  • [19] Szurkowska K, Zgadzaj A, Kuras M, Kolmas J; (2018) Novel hybrid material based on Mg2+ and SiO4 4- co-substituted nano-hydroxyapatite, alginate and chondroitin sulphate for potential use in biomaterials engineering. Ceram Int 44, 18551-18559. DOI:10.1016/J.CERAMINT.2018.07.077
  • [20] Tolaimate A, Desbrie’res J, Rhazi M, Alagui A, Vincendon M, Vottero P; (2000) On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer 41, 2463-2469. DOI:10.1016/S0032-3861(99)00400-0
  • [21] Ripamonti U, Roden LC, Renton LF; (2012) Osteoinductive hydroxyapatite-coated titanium implants. Biomaterials 33, 3813-3823. DOI:10.1016/j.biomaterials. 2012.01.050
  • [22] Rupani A, Bastida LAH, Rutten F, Dent A, Turner I, Cartmell S, (2012) Osteoblast activity on carbonated hydroxyapatite. J Biomed Mater Res. Part A 100, 1089-1096. DOI:10.1002/jbm.a.34037
  • [23] Jin HH, Kim DH, Kim TW, Shin KK, Jung JS, Parka HC, Yoon SY; (2012) In vivo evaluation of porous hydroxyapatite/chitosan–alginate composite scaffolds for bone tissue engineering. Int J Biol Macromol 51, 1079-1085. DOI:10.1016/j.ijbiomac.2012.08.027
  • [24] Bose S, Tarafder S; (2012) Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 8(4), 1401-1421. DOI:10.1016/j.actbio.2011.11.017
  • [25] Lakrat M, Fadlaoui S, Aaddouz M, El Asri O, Melhaoui M, Mejdoubi EM; (2020) Synthesis and characterization of composites based on hydroxyapatite nanoparticles and chitosan extracted from shells of the freshwater crab Potamon algeriense. Prog Chem Appl Chitin Deriv 14, 23-35. DOI:10.15259/PCACD.24.002
  • [26] Danilchenko SM, Kalinkevich OV, Pogorelov MV; (2009) Chitosan–hydroxyapatite composite biomaterials made by a one step co-precipitation method: preparation, characterization and in vivo tests. Biol Phys Chem 9, 119-126. DOI:10.4024/22DA09A.JBPC.09.03
  • [27] Kong L, Gao Y, Cao W, Gong Y, Zhao N, Zhang X, (2005); Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J Biomed Mater Res 75A, 275-282. DOI:10.1002/jbm.a.30414
  • [28] Li J, Chen YP, Yin Y, Yao F, Yao K; (2007) Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials 28, 781-790. DOI:10.1016/j.biomaterials.2006.09.042
  • [29] Sarig S, Kahana F; (2002) Rapid formation of nanocrystalline apatite. J Cryst Growth 237-239, 55-59. DOI:10.1016/S0022-0248(01)01850-4
  • [30] Stępniewski M, Martynkiewicz J, Gosk J; (2017) Chitosan and its composites: properties for use in bone substitution. Polym Med 47, 49-53. DOI:10.17219/pim/76517
  • [31] Earl JS, Wood DJ, Milne SJ; (2006) Hydrothermal synthesis of hydroxyapatite. J Phys Conf Ser. 26, 268-271. DOI:10.1088/1742-6596/26/1/064
  • [32] Kothapalli CR, Wei M, Legeros RZ, Shaw MT; (2005) Synthesized by the hydrothermal method. J Mater Sci Mater Med 16, 441-446. DOI:10.1007/s10856-005-6984-85
  • [33] Cihlar J, Castkova K; (2002) Direct synthesis of nanocrystalline hydroxyapatite by hydrothermal hydrolysis of alkylphosphates. Chem Mon 133, 761-771. DOI:10.1007/s00706020004
  • [34] Liu J, Ye X, Wang H, Zhu M, Wang B, Yan H; (2003) The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram Int 29, 629-633. DOI:10.1016/S0272-8842(02)00210-9
  • [35] Du X, Chu Y, Xing S, Dong L; (2009) Hydrothermal synthesis of calcium hydroxyapatite nanorods in the presence of PVP. J Mater Sci 44, 6273-6279. DOI:10.1007/s10853-009-3860-6
  • [36] Rao RR, Roopa HN, Kannan TS; (1997) Solid state synthesis and thermal stability of HAP and HAP-beta-TCP composite ceramic powders. J Mater Sci Mater Med 8, 511-518. DOI:10.1023/a:1018586412270
  • [37] Vijayalakshmi U, Rajeswari S; (2012) Influence of process parameters on the solgel synthesis of nanohydroxyapatite using various phosphorus precursors. J Sol Gel Sci Technol. 63, 45-55. DOI:10.1007/s10971-012-2762-2
  • [38] Jillavenkatesa A, Condrate RA (1998) Sol-gel processing of hydroxyapatite. J Mater Sci 33, 4111-4119. DOI:10.1023/A:1004436732282
  • [39] Boudemagh D, Venturini P, Fleutot S, Cleymand F; (2019) Elaboration of hydroxyapatite nanoparticles and chitosan/hydroxyapatite composites: a present status. Polym Bull. 76, 2621-2653. DOI:10.1007/s00289-018-2483-y
  • [40] Błażewicz S, Stoch L; (2003) Biocybernetyka i inżynieria biomedyczna 2000, t.4, Biomateriały, AOW EXIT, Warszawa.
  • [41] Mc Lean FC, Budy AM; (1959) Connective and supporting tissues: bone. Annu Rev Physol 21, 69-90.
  • [42] Venkateswarlu, K; (2010) Bose, A.C.; Rameshbabu, N. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson–Hall analysis. Phys B Condens Matter. 405, 4256-4261. DOI:10.1016%2Fj.physb.2010.07.020
  • [43] Suparova M; (2015) Substituted hydroxyapatites for biomedical applications: a review. J Ceram Int 41, 9203-9231. DOI:10.1016/j.ceramint.2015.03.316
  • [44] Kaflak A, Kolodziejski W; (2011) Complementary information on water and hydroxyl groups in nanocrystalline carbonated hydroxyapatites from TGA, NMR and IR measurements. J Mol Struct 990, 263-270. DOI:10.1016/j.mol.struc.2011.01.056
  • [45] Dorozhkin SV; (2015) Calcium orthophosphate deposits: Preparation, properties and biomedical applications. Mater Sci Eng C Mater Biol Appl 55, 272-326. DOI:10.1016/j.msec.2015.05.033
  • [46] Ducheyne P, Helly K, Hutmacher D, Grainger D, Kirkpatrick C; (2011) Comprehensive biomaterials, 1st edn, Elsevier, Amsterdam.
  • [47] Trinkunaite-Felsen J, Stankeviciute Z, Yang JC, Yang TCK, Beganskiene A, Kareiva A; (2014) Calcium hydroxyapatite/whitlockite obtained from dairy products: simple, environmentally benign and green preparation technology. Ceram Int 40, 12717-12722. DOI:10.1016/j.ceramint.2014.04.120

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-c3510c4f-12a2-4134-91d6-4634411649a6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.