Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 14 | 58 | 306-319

Article title

Nowe trendy w obrazowaniu raka stercza metodą ultrasonografii przezodbytniczej

Content

Title variants

EN
Novel trends in transrectal ultrasound imaging of prostate gland carcinoma

Languages of publication

EN PL

Abstracts

EN
Carcinoma of the prostate gland is the most common neoplasm in men. Its treatment depends on multiple factors among which local staging plays a significant role. The basic method is transrectal ultrasound imaging. This examination enables imaging of the prostate gland and its abnormalities, but it also allows ultrasound-guided biopsies to be conducted. A conventional gray-scale ultrasound examination enables assessment of the size, echostructure and outlines of the anatomic capsule, but in many cases, neoplastic lesions cannot be observed. For this reason, new sonographic techniques are implemented in order to facilitate detectability of cancer. The usage of contrast agents during transrectal ultrasound examination must be emphasized since, in combination with color Doppler, it facilitates detection of cancerous lesions by visualizing flow which is not observable without contrast enhancement. Elastography, in turn, is a different solution. It uses the differences in tissue elasticity between a neoplastic region and normal prostatic parenchyma that surrounds it. This technique facilitates detection of lesions irrespective of their echogenicity and thereby supplements conventional transrectal examinations. However, the size of the prostate gland and its relatively far location from the transducer may constitute limitations to the effectiveness of elastography. Moreover, the manner of conducting such an examination depends on the examiner and his or her subjective assessment. Another method, which falls within the novel, popular trend of combining imaging methods, is fusion of magnetic resonance imaging and transrectal sonography. The application of multidimensional magnetic resonance imaging, which is currently believed to be the best method for prostate cancer staging, in combination with the availability of a TRUS examination and the possibility of monitoring biopsies in real-time sonography is a promising alternative, but it is associated with higher costs and longer duration of the examination. This paper presents the most important novel trends in transrectal imaging in prostate cancer diagnosis based on the review of the articles available in the PubMed base and published after 2010.
PL
Rak stercza to najczęstszy nowotwór u mężczyzn. Sposób leczenia zależy od wielu czynników, wśród których bardzo ważną rolę odgrywa ocena miejscowego stopnia zaawansowania. Podstawową metodą jest tutaj ultrasonografia przezodbytnicza. Badanie to pozwala nie tylko na zobrazowanie stercza i jego nieprawidłowości, lecz także na przeprowadzenie biopsji pod kontrolą ultrasonografii. Klasyczne badanie ultrasonograficzne w skali szarości umożliwia ocenę wielkości, echostruktury stercza i zarysów torebki anatomicznej, ale w wielu przypadkach nie uwidacznia zmian nowotworowych. Z tego powodu wprowadza się nowe technologie ultrasonograficzne, aby poprawić wykrywalność raka. Warto zwrócić uwagę na zastosowanie środków kontrastujących w trakcie badania przezodbytniczego, które wraz z obrazowaniem kolorowym dopplerem poprawiają wykrywalność raka: uwidaczniają przepływy niestwierdzalne bez wzmocnienia kontrastowego. Innym rozwiązaniem jest elastografia, wykorzystująca różnicę sztywności w obszarze nowotworowym i w zdrowym, otaczającym chorą tkankę miąższu stercza. Technika ta pozwala na wykrycie zmian niezależnie od ich echogeniczności, dzięki czemu uzupełnia klasyczne badanie przezodbytnicze. Ograniczać skuteczność elastografii mogą wielkość stercza i jego dość dalekie położenie w stosunku do głowicy. Z kolei sposób wykonania badania zależy od doświadczenia badającego i jego subiektywnej oceny. Inną metodą wpisującą się w modny obecnie trend łączenia metod obrazowania jest fuzja rezonansu magnetycznego i badania ultrasonograficznego przezodbytniczego. Wykorzystanie obrazowania wielopłaszczyznowego rezonansu, uznawanego obecnie za najlepszą metodę oceny stopnia miejscowego zaawansowania raka, w połączeniu z dostępnością TRUS i łatwością monitorowania biopsji pod kontrolą ultrasonografii w czasie rzeczywistym to bardzo obiecująca alternatywa – choć wiąże się ze znacząco większym kosztem i wydłużonym czasem badania. Na podstawie przeglądu artykułów dostępnych w bazie PubMed opublikowanych po 2010 roku przedstawiono najważniejsze kierunki rozwoju badania transrektalnego w diagnostyce raka stercza.

Discipline

Year

Volume

14

Issue

58

Pages

306-319

Physical description

Contributors

  • Department of Urology, Jagiellonian University Medical College, Grzegórzecka 18, 31-531 Cracow, Poland.
  • Institute of Fundamental Technological Research, Polish Academy of Science, Warsaw, Poland
  • Department of Urology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic
  • Department of Urology, Jagiellonian University Medical College, Cracow, Poland
  • Department of Urology, Jagiellonian University Medical College, Cracow, Poland

References

  • 1. McDavid K, Lee J, Fulton JP, Tonita J, Thompson TD: Prostate cancer incidence and mortality rates and trends in the United States and Canada. Public Health Rep 2004; 119: 174–186.
  • 2. Morote J, Raventós CX, Lorente JA, Lopez-Pacios MA, Encabo G, de Torres I et al.: Comparison of percent free prostate specific antigen and prostate specific antigen density as methods to enhance prostate specific antigen specificity in early prostate cancer detection in men with normal rectal examination and prostate specific antigen between 4.1 and 10 ng/ml. J Urol 1997; 158: 502–504.
  • 3. Yokomizo Y, Miyoshi Y, Nakaigawa N, Makiyama K, Ogawa T, Yao M et al.: Free PSA/total PSA ratio increases the detection rate of prostate cancer in twelve-core biopsy. Urol Int 2009; 82: 280–285.
  • 4. Brock M, von Bodman C, Sommerer F, Löppenberg B, Klein T, Deix T et al.: Comparison of real-time elastography with grey-scale ultrasonography for detection of organ-confined prostate cancer and extra capsular extension: a prospective analysis using whole mount sections after radical prostatectomy. BJU Int 2011; 108: E217–E222.
  • 5. Heidenreich A, Bastian PJ, Bellmunt J, Bolla M et al.: rozdział Rak stercza, podrozdział Stopień zaawansowania – cecha T. EAU guidelines 2013; 7: 28.
  • 6. Gramiak R, Shah PM: Echocardiography of the aortic root. Invest Radiol 1968; 3: 356–366.
  • 7. Gramiak R, Shah PM, Kramer DE: Ultrasound cardiography: contrast study in anatomy and function. Radiology 1969; 92: 939–948.
  • 8. Kremkau FW, Gramiak R, Carstensen EL, Shah PM, Kramer DH: Ultrasonic detection of cavitation at catheter tips. Am J Roentgenol Radium Ther Nucl Med 1970; 110: 177–183.
  • 9. Lauterborn W: Numerical investigation of nonlinear oscillation of gas bubbles in liquids. J Acoust Soc Am 1976; 283.
  • 10. Medwin H: In situ acoustic measurements of microbubbles at sea. Journal of Geophysical Research 1977; 82: 971–976.
  • 11. de Jong N, Hoff L, Skotland T, Bom N: Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements. Ultrasonics 1992; 30: 95–103.
  • 12. Furlow B: Contrast-enhanced ultrasound. Radiol Technol 2009; 80: 547–561.
  • 13. Wilson SR, Greenbaum LD, Goldberg BB: Contrast-enhanced ultrasound: what is the evidence and what are the obstacles? AJR Am J Roentgenol 2009; 193: 55–60.
  • 14. Halpern EJ, Ramey JR, Strup SE, Frauscher F, McCue P, Gomella LG: Detection of prostate carcinoma with contrast-enhanced sonography using intermittent harmonic imaging. Cancer 2005; 104: 2373–2383.
  • 15. Aigner F, Pallwein L, Mitterberger M, Pinggera GM, Mikuz G, Horninger W et al.: Contrast-enhanced ultrasonography using cadence-contrast pulse sequencing technology for targeted biopsy of the prostate. BJU Int 2009; 103: 458–463.
  • 16. Brawer MK, Deering RE, Brown M, Preston SD, Bigler SA: Predictors of pathologic stage in prostatic carcinoma. The role of neovascularity. Cancer 1994; 73: 678–687.
  • 17. Ismail M, Petersen RO, Alexander AA, Newschaffer C, Gomella LG: Color Doppler imaging in predicting the biologic behavior of prostate cancer: correlation with disease-free survival. Urology 1997; 50: 906–912.
  • 18. Halpern EJ, Frauscher F, Forsberg F, Strup SE, Nazarian LN, O’Kane P et al.: High-frequency Doppler US of the prostate: effect of patient position. Radiology 2002; 222: 634–639.
  • 19. Halpern EJ, Frauscher F, Strup SE, Nazarian LN, O’Kane P, Gomella LG: Prostate: high-frequency Doppler US imaging for cancer detection. Radiology 2002; 225: 71–77.
  • 20. Xie SW, Li HL, Du J, Guo YF, Xin M, Li FH: Contrast-enhanced ultrasonography with contrast-tuned imaging technology for the detection of prostate cancer: comparison with conventional ultrasonography. BJU Int 2011; 109: 1620–1626.
  • 21. Ives EP, Gomella LG, Halpern EJ: Effect of dutasteride therapy on Doppler US evaluation of prostate: preliminary results. Radiology 2005; 237: 197–201.
  • 22. Mitterberger M, Pinggera G, Horninger W, Strasser H, Halpern E, Pallwein L et al.: Dutasteride prior to contrast-enhanced colour Doppler ultrasound prostate biopsy increases prostate cancer detection. Eur Urol 2008; 53: 112–117.
  • 23. Mitterberger M, Pinggera GM, Pallwein L, Gradl J, Frauscher F, Bartsch G et al.: The value of three-dimensional transrectal ultrasonography in staging prostate cancer. BJU Int 2007; 100: 47–50.
  • 24. Sehgal CM, Broderick GA, Whittington R, Gorniak RJ, Arger PH: Three-dimensional US and volumetric assessment of the prostate. Radiology 1994; 192: 274–278.
  • 25. Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T: Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 1998; 20: 260–274.
  • 26. Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X: Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991; 13: 111–134.
  • 27. Konig K, Scheipers U, Pesavento A, Lorenz A, Ermert H, Senge T: Initial experiences with real-time elastography guided biopsies of the prostate. J Urol 2005; 174: 115–117.
  • 28. Pesavento APC, Krueger M, Ermert H: A time efficient and accurate strain estimation concept for ultrasonic elastography using interactive phase zero estimation. IEEE Trans Ultrason Ferroelect Freq Contr 1999; 46: 1057–1067.
  • 29. Ophir J, Miller RK, Ponnekanti H, Céspedes I, Whittaker AD: Elastography of beef muscle. Meat Sci 1994; 36: 239–250.
  • 30. Pallwein L, Aigner F, Faschingbauer R, Pallwein E, Pinggera G, Bartsch G et al.: Prostate cancer diagnosis: value of real-time elastography. Abdom Imaging 2008: 33; 729–735.
  • 31. Pallwein L, Mitterberger M, Gradl J, Aigner F, Horninger W, Strasser H et al.: Value of contrast-enhanced ultrasound and elastography in imaging of prostate cancer. Curr Opin Urol 2007; 17: 39–47.
  • 32. Aigner F, Pallwein L, Junker D, Schäfer G, Mikuz G, Pedross F et al.: Value of real-time elastography targeted biopsy for prostate cancer detection in men with prostate specific antigen 1.25 ng/ml or greater and 4.00 ng/ml or less. J Urol 2010; 184: 913–917.
  • 33. Pallwein L, Mitterberger M, Pinggera G, Aigner F, Pedross F, Gradl J et al.: Sonoelastography of the prostate: Comparison with systematic biopsy findings in 492 patients. Eur J Radiol 2008; 65: 304–310.
  • 34. Aboumarzouk OM, Ogston S, Huang Z, Melzer AEA, Stolzenberg JU, Nabi G: Diagnostic accuracy of transrectal elastosonography (TRES) imaging for the diagnosis of prostate cancer: a systematic review and meta-analysis. BJU Int 2012; 110: 1414–1423.
  • 35. Salomon G, Köllerman J, Thederan I, Chunk FK, Budäus L et al.: Evaluation of prostate cancer detection with ultrasound real-time elastography: a comparison with step section pathological analysis after radical prostatectomy. Eur Urol 2008; 54: 1354–1362.
  • 36. Sumura M, Shigeno K, Hyuga T, Yoneda T, Shiina H, Igawa M: Initial evaluation of prostate cancer with real-time elastography based on step-section pathologic analysis after radical prostatectomy: a preliminary study. Int J Urol 2007; 14: 811–816.
  • 37. Hricak H, Wang L, Wei DC, Coakley FV, Akin O, Reuter VE et al.: The role of preoperative endorectal MRI in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy. Cancer 2004; 100: 2655–2663.
  • 38. Sartor AO, Hricak H, Wheeler TM, Coleman J, Penson DF, Carrol PR et al.: Evaluating localized prostate cancer and identifying candidates for focal therapy. Urology 2008; 72 (6 Suppl): 12–23.
  • 39. Aigner F, Pallwein L, Pelzer A, Schaefer G, Bartsch G, Nedden Dz et al.: Value of magnetic resonance imaging in prostate cancer diagnosis. World J Urol 2007; 25: 351–359.
  • 40. Moore CM, Robertson NL, Arsanious N, Middleton E, Villers A, Klotz L et al.: Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. Eur Urol 2013; 63: 125–140.
  • 41. Mozer P, Baumann M, Chevreau G, Moreau-Gaudry A, Bart S, Renard-Penna R et al.: Mapping of transrectal ultrasonographic prostate biopsies: quality control and learning curve assessment by image processing. J Ultrasound Med 2009; 28: 455–460.
  • 42. Ukimura O, Desai MM, Palmer S, Valencerina S, Gross M, Abreau AL et al.: 3-Dimensional elastic registration system of prostate biopsy location by real-time 3-dimensional transrectal ultrasound guidance with magnetic resonance/transrectal ultrasound image fusion. J Urol 2012; 187: 1080–1086.
  • 43. Pinto PA, Chung PH, Rastinehad AR, Baccala AA Jr, Kruecker J, Benjamin CJ et al.: Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging. J Urol 2011; 186: 1281–1285.
  • 44. Miyagawa T, Ishikawa S, Kimura T, Suetomi T, Tsutsumi M, Irie T et al.: Real-time Virtual Sonography for navigation during targeted prostate biopsy using magnetic resonance imaging data. Int J Urol 2010; 17: 855–860.
  • 45. Reynier C, Troccaz J, Fourneret P, Dusserre A, Gay-Jeune C, Descotes JL et al.: MRI/TRUS data fusion for prostate brachytherapy. Prelimenary results. Med Phys 2004; 31: 1568–1575.
  • 46. Fiard G, Hohn N, Descotes JL, Rambeaud JJ, Troccaz J, Long JA: Targeted MRI-guided prostate biopsies for the detection of prostate cancer: initial clinical experience with real-time 3-dimensional transrectal ultrasound guidance and magnetic resonance/transrectal ultrasound image fusion. Urology 2013; 81: 1372–1378.
  • 47. Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G et al.: ESUR prostate MR guidelines 2012. Eur Radiol 2012; 22: 746–757.
  • 48. Fiard G, Hohn N, Descotes JL, Rambeaud JJ, Troccaz J, Targeted JA: MRI-guided prostate biopsies for the detection of prostate cancer: initial clinical experience with real-time 3-dimensional transrectal ultrasound guidance and magnetic resonance/transrectal ultrasound image fusion. Urology 2013; 81: 1372–1378.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-c2a24c06-0056-4385-ad69-bf3349319138
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.