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ABSTRACT 

I think that far-away travels into Space are possible in the way that it is possible to find again 

people on our Earth, after the return of a very long travel into Space, not aged, like the people who have 

traveled inside the spacecraft. Current physics does not allow this and I have developed the following 

Theory which would thus complement the current Theory of General Relativity when we go to the limits 

of the reasoning. Current Theories like General Relativity or Quantum Mechanics are not impacted when 

the reasoning is not pushed to the limits. My reasoning at the limits just complements current Theories 

when the parameters take extreme values and thus the logic of current physics is respected. 
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1.  INTRODUCTION  

 

The Universe is very complex and cannot be fully explained by equations. Physics will 

explain, for example, that Matter is made of electrons, protons and neutrons which are 

themselves made of smaller particles and so on. But when we go to the "limit" of the reasoning, 

physics (and its equations) will not be able to explain from where the original Matter or the 

original Energy came from. 

So, I am going to push my reasoning "to the limit" and develop my Theory, but I know 

that any physics theory can be complemented by pushing the limits, and I'm sure that someday 

someone will say that something is missing to my Theory and will change some points in order 
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to continue to improve. My following Theory is an analysis of the time at the level of a fast-

moving object (like a spacecraft for example) and near an external gravity. I like reasonings “to 

the limits”. In fact, by pushing reasonings to the limits, we can see what must be improved, 

optimized, complemented! We can see what is lacking in a theory, in a physical explanation of 

a phenomenon. 

There are many obstacles to make far-away travels into the Space and the time to make 

the travel is one of the most important. And so, I have analyzed this parameter and it is the 

object of my following Theory. 

 

 

2.  THE THEORY ON THE NEGATIVE TIME 

 

I will analyze the effect of the gravity, combined with the effect of speed, on the time t 

inside a moving object (a spacecraft for example). I will need the following General Relativity 

equations to start my explanations and so I will start by a summary of the presentation of these 

equations:  

I place myself in the relativistic area where an object moves very fast seen from our Earth, 

at a speed v which is close and lower than the speed of light c. 

I start from the following equations from the Theory of General Relativity: Refs. [1] [2] 

[3]. 

 

(1) 𝑇 = 𝛾. 𝑡   
 

(2) 𝑀 = 𝛾.𝑚   

 

(3) 𝐿 =
ℓ

𝛾
   

 

(4) 𝛾 =
1

√(1 −  
𝑣2

𝑐2
)

   

 

(5) 𝑣 =
ℓ

𝑇
=

𝐿

𝑡
 

 

The parameters  M, T and L  are the parameters seen by our Earth. These parameters 

become  m, t and  𝓵  in the moving frame of a spacecraft for example. If I consider that an 

object moves at a speed v seen from our Earth and has a mass m at rest, when we are in the 

relativistic domain (where v approaches c and therefore when  𝜸  becomes much greater than 

1), its relativistic mass becomes M. And this mass M increases when v increases. When v tends 

to c,  𝜸 tends to infinity and therefore M tends to infinity. 

If I use the equation (5) above          𝒗 =
𝓵

𝑻
=

𝑳

𝒕
     

I can also write that     𝑻 =
𝓵

𝒗
 

and as   𝑳 =
𝓵

𝜸
   see equation (3) 
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we can conclude that   𝒕 = (
𝓵

𝜸
) . (

𝟏

𝒗
) 

When v tends to c, the coefficient  𝜸  tends to infinity (equation (4) ), and so L tends to 0 

and t tends to 0, when v tends to c. 

The mass M, seen from our Earth, evolves like  𝜸  when v tends to c (equation (2):  

𝑴 =  𝜸.𝒎) and m is a finite mass and therefore M tends towards infinity when v tends to c.  

The time T, seen from our Earth, evolves like  𝜸  when v tends to c (equation (1):   

𝑻 =  𝜸. 𝒕 ), but t tends towards 0 and so the evolution of T is different than the evolution of M 

when v tends towards c.  

From the equation (5)   𝒗 =
𝓵

𝑻
    we see that   𝑻 =

𝓵

𝒗
    and so when v tends towards c the 

time T will tend towards  𝑻 =
𝓵

𝒄
     

In this situation, if the travel into the Space is very long,  𝓵 will be very high and so T 

will be very high, but T will not tend towards infinity because  𝓵  is a finite value, even if v 

tends towards c.    
But T will be much higher than t because a far-away travel into Space represents a high 

value for  𝓵  and also t tends towards 0 when v tends towards c. 

As  𝑻 =
𝓵

𝒗
  , T will depend on the length  𝓵 of the travel and on the speed v of the 

spacecraft. T will increase when  𝓵  will increase and T will also increase when the speed v will 

decrease. 

If we consider a spacecraft of mass m, and moving at a speed v, the internal time of the 

spacecraft, t, will tend towards 0 when v tends towards c. 

For current physics, inside the spacecraft, the time t will therefore be frozen if the 

spacecraft moves at a speed v very close to the speed of light c. Inside the spacecraft, the time 

t remains where it is: it is frozen (t tends towards 0 when v tends towards c). So we don't age 

at all. Only the time outside the spacecraft, T, changes and becomes very high when the travel 

into the Space is very long. 

I think that the internal time t of the spacecraft does not stay fixed (it will not be frozen) 

but it also changes, at the same time as the external time T changes. 

It changes depending on the speed of the spacecraft and on the external gravity to the 

spacecraft. I think one equation is missing in the above 5 equations, where there would also be 

the effect of the external gravity to the spacecraft. And I also think that the definition of the 

time t inside the spacecraft needs to be complemented. 

We must translate the fact that when v increases the internal time t inside the spacecraft 

decreases. And also, the fact that if the external gravity to the spacecraft increases, the internal 

time t of the spacecraft also decreases: Ref. [4]. 

For the effect of speed, I propose to replace the time t by: 

 

𝒕 → 𝒕. (𝟏 − 
𝒗𝟐

𝒄𝟐
) 

We can verify in this complement for the time t (the coefficient  (𝟏 − 
𝒗𝟐

𝒄𝟐
) ) that when v 

= 0, t is unchanged (the coefficient (𝟏 − 
𝒗𝟐

𝒄𝟐
) = 1) and when v tends towards c, the coefficient 

(𝟏 − 
𝒗𝟐

𝒄𝟐
) tends to 0 and as t already tends to 0 when v tends to c, this does not change anything: 
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the time t will just tend towards 0 faster than what is currently predicted by the current theory 

of General Relativity. 
And when v increases, we have well the time t which decreases. Now I am going to 

introduce a coefficient for the external gravity to the spacecraft which follows the same logic 

as the coefficient for the speed  (𝟏 − 
𝒗𝟐

𝒄𝟐
). 

I will represent the effect of gravity by a mass MG, external to the spacecraft. This mass 

can be the mass of a planet or the mass of a "black-hole" or ... 

The equivalent of v would be MG c represents the same quantity as v, and it is the 

maximum limit of v. For MG, I have to find an equivalent quantity (therefore a mass) and it 

must be the maximum limit of MG and therefore infinity. I propose the following term:   𝒎 . 𝜸  
Indeed, m is a mass, and when v tends towards c, the coefficient  𝜸 tends to infinity and therefore 

the term   𝒎 . 𝜸  tends towards infinity. 

 

Remark: 

𝑴 =  𝒎 . 𝜸   represents the relativistic mass of m. We must therefore not replace m by its 

relativistic mass M, later in the equations, otherwise this would amount to replace m a second 

time by M. 

I therefore propose to replace the time t with the following term:   (6) 

 

𝒕 → 𝒕. (𝟏 − 
𝒗𝟐

𝒄𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
) 

 

This equation represents the 6th equation to be added to the General Relativity and allows 

me to add a term to calculate the effect of an external gravity MG to a mass m, on the internal 

time t of a moving object of mass m which moves at a speed v (like a spacecraft for example). 

I found a relationship between t, v, m and MG.  

This equation, which I have defined, gives the new value of t, which will have to be 

replaced in all the other equations (the 5 other equations of the theory of General Relativity: see 

before). 

We saw above that    𝒕 = (
𝓵

𝜸
) . (

𝟏

𝒗
)   And so       𝜸 = (

𝓵

𝒗
) . (

𝟏

𝒕
)  

If I change t in this equation by the new value of t from the equation (6),  𝜸  will be 

changed and therefore the other 5 equations of relativity will be impacted. 

But we must keep the maximum limit of v, which is c, and so there is an analysis to do 

before replacing t in the equations. 

This equation can also be written as follows since    

 

 𝜸 =
𝟏

√(𝟏 −  
𝒗𝟐

𝒄𝟐
)

   

 

𝒕 → 𝒕. (
𝟏

𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎. 𝜸)𝟐
) 
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Now it is time to analyze this equation (6): 

 

I'll take the following parameters for the equations: 

 

𝑨 = (𝟏 − 
𝒗𝟐

𝒄𝟐
) =

𝟏

𝜸𝟐
 

 

𝑩 = (𝟏 −
𝑴𝑮

𝟐

(𝒎.𝜸)𝟐
) 

 

𝒕 = 𝒕 . 𝑨 . 𝑩        (t is replaced by:    𝒕 . 𝑨 . 𝑩) 

 

𝑪 =  𝑨 . 𝑩         and so     𝒕 → 𝒕. 𝑪 

 

When v increases, A is decreasing and so t decreases. In the same way, when MG 

increases, B is decreasing and so t decreases. If v = 0 and if MG = 0 , t = t : the time is not 

changed.  

In the presence of external gravity MG to a spacecraft of mass m, the effect of this gravity 

is local. The effect of the term B, (𝟏 −
𝑴𝑮

𝟐

(𝒎.𝜸)𝟐
),  is present only if the mass m is located at a 

distance close to the gravity of mass MG. 

I have not yet defined an equation to specify which parameters are involved in the local 

term (see below for that). But that will not change my reasoning. 

Assuming therefore that the mass m is sufficiently close to the gravity of mass MG, the 

effect of the external gravity on the time t inside the spacecraft will therefore be the coefficient 

B. If the gravity MG increases, we verify that t decreases: Ref. [5]. 

Likewise, if the speed v increases and becomes very high (very close to c),  𝜸  tends to 

infinity and therefore the effect of the external gravity MG is canceled. Indeed, the coefficient 

B tends towards 1 when v tends towards c, and therefore t is unchanged by MG. 

We can also notice that this coefficient B can be negative and therefore see that the time 

t can become negative! 
The condition for this is written as follows: 

 

(𝟏 −
𝑴𝑮

𝟐

(𝒎.𝜸)𝟐
) < 𝟎     because   (𝟏 − 

𝒗𝟐

𝒄𝟐
)   is always positive (because v < c ) 

 

(
𝑴𝑮

𝟐

(𝒎.𝜸)𝟐
) > 𝟏      

 

𝜸 <  
𝑴𝑮

𝒎
 

 
𝟏

√(𝟏 −  
𝒗𝟐

𝒄𝟐
)

<  
𝑴𝑮

𝒎
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𝟏 −  
𝒗𝟐

𝒄𝟐
 >  

𝒎𝟐

𝑴𝑮
𝟐 

 

We arrive to:    (7) 

 

𝒗 < 𝒄. ( √𝟏 −
𝒎𝟐

𝑴𝑮
𝟐 ) 

 

There is therefore a maximum value for v so that the time t stays negative. This value is 

v0: 

 

𝒗𝟎  =  𝒄. ( √𝟏 −
𝒎𝟐

𝑴𝑮
𝟐 ) 

 

This maximum value of v reflects the fact that when v increases, the coefficient  𝜸 

increases and therefore  𝒎 . 𝜸  increases, reducing the effect of the gravity MG. We can also 

notice that the time t can only become negative with the help of the external gravity MG, for a 

moving mass m. 

One condition is interesting to analyze: 

Indeed, when the coefficient B is negative it is necessary that the opposite of B (which is 

positive) is less than 1 so that t is reduced and not increased by the effect of gravity. It is written 

as follows: 

 

(𝟏 −
𝑴𝑮

𝟐

(𝒎.𝜸)𝟐
) . (−𝟏) < 𝟏      

 
𝑴𝑮

𝒎.𝜸
< √𝟐 

 

𝜸 >  
𝑴𝑮

√𝟐 .𝒎
 

 
𝟏

√(𝟏 −  
𝒗𝟐

𝒄𝟐
)

>  
𝑴𝑮

√𝟐 .𝒎
 

 

We arrive to:   (8) 

 

𝒗 >  𝒄. ( √𝟏 −
𝟐.𝒎𝟐

𝑴𝑮
𝟐  ) 



World Scientific News 153(1) (2021) 1-42 

 

 

-7- 

There is therefore a minimum value for v so that the time t is reduced when v and the 

gravity MG increases. The value of v obtained by the equation (8) can be reduced by the factor 

(𝟏 − 
𝒗𝟐

𝒄𝟐
)    which is less than 1 as v increases.  

The true value of v mini is obtained by writing the following condition: 

 

(𝟏 − 
𝒗𝟐

𝒄𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
) . (-1) < 1 

 

Which gives the following condition: equation (9) 

  

𝑴𝑮

𝒎
 >      

√
  
  
  
  
  

(

 
 
𝟏 + (

𝟏

(𝟏 − 
𝒗𝟐

𝒄𝟐
)
)

)

 
 
     .  

(

 
𝟏

√(𝟏 −  
𝒗𝟐

𝒄𝟐
))

  

 

The value of v min obtained in the equation (9) is less than the value obtained with the 

equation (8). 

This value is v1, which ensures the following equality: 

 

𝑴𝑮

𝒎
  =       

√
  
  
  
  
  

(

 
 
𝟏 + (

𝟏

(𝟏 − 
𝒗𝟐

𝒄𝟐
)
)

)

 
 
     .  

(

 
𝟏

√(𝟏 −  
𝒗𝟐

𝒄𝟐
))

  

 

This equality can be written as follows:  (10) 

 
𝑴𝑮

𝒎
  =   𝜸 . ( √(𝟏 + 𝜸𝟐)  )  

 

The equation (10) gives the value v1 

This value is of particular interest to me, because the following term in equation (6) is 

equal to - 1 when  v = v1 

And under this condition, the time t becomes - t and there is for me, from this speed, a 

passage of the mass m (for example a spacecraft) into a "space-time" where the time t is 

negative. 
 

(
𝟏

𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
)  =  −𝟏 

 

For  v = v1  the previous term becomes equal to -1 and t is replaced by - t 

We can notice that  v1  is less than  v0 
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This means that the time starts to become negative when v is greater than v1  and remains 

negative until v reaches v0. When v approaches v0 (while remaining lower than v0) the time t 

tends towards 0 in a negative way. When the   
𝑴𝑮

𝒎
   ratio is high, the value of v which satisfies 

the equation (10) above is very high (close to c). 

We can also notice that when the gravity increases (when MG increases), to obtain the 

condition where t = - t (where t becomes - t in fact), we must increase v. This is surprising, but 

we can explain it by the fact that v must be able to tend towards c. Indeed, when MG increases 

and tends towards infinity, in order to respect the equality (10), v must tend towards c. 

If we had had an inverse condition, in the sense that when the gravity increases, to obtain 

the condition where t = - t (where t becomes - t in fact), we must decrease v, the gravity would 

limit the speed of an object moving around it. Whereas the external gravity reduces the time 

inside the spacecraft and therefore has the same effect as increasing the speed. 

And so the equation (10) is consistent. 

If MG is very high and tends towards infinity, when the spacecraft of mass m enters the 

gravity field of the mass MG, it will be attracted by an enormous force and its speed v will tend 

towards c. We have seen that   𝒗 = (
𝓵

𝜸
) . (

𝟏

𝒕
)    with the help of the 5 equations of the General 

Relativity Theory defined at the beginning of this document. If I replace the value of  t  by 

𝒕 . (
𝟏

𝜸𝟐
)   when the speed of the spacecraft is higher than v0, I get the following result: 

 

𝒗 → (
𝓵

𝜸
) . (

𝟏

 𝒕. (
𝟏
𝜸𝟐
)
) = 𝒗 . 𝜸𝟐  

 

v becomes   𝒗 . 𝜸𝟐   when v is greater than v0  

(v0 being the speed at which the external gravity MG has no longer an effect on the moving 

mass m since the relativistic mass   𝒎 . 𝛄   is equal to the external gravity  MG  and thus the 

term B disappears and only remains the term  𝒕 . (
𝟏

𝜸𝟐
): it is linked to the high speed v0  of the 

spacecraft which increases its relativistic mass   𝒎 . 𝜸 ). 
Or else, v also becomes   𝒗 . 𝜸𝟐   when there is no effect of gravity: in fact when there is 

no external gravity the time t is also replaced by the term   𝒕 . (
𝟏

𝜸𝟐
) 

When v tends to c, the term   𝒗 . 𝜸𝟐  will tend towards   𝒄 . 𝜸𝟐: everything happens as if 

the speed of light were exceeded. Indeed, inside the spacecraft the time is so reduced that it 

would correspond to exceeding the speed of light c. The term  𝛄  should be rewritten as follows 

since the speed of light c cannot be exceeded: (11) 

 

𝜸 =
𝟏

√(𝟏 −  
𝒗𝟐

(𝒄.𝜸𝟐)𝟐
)

   

 

Indeed I must replace the speed limit c  by   𝒄 . 𝜸𝟐 

On the other hand, the measured speed v cannot exceed c and therefore remains at its 

value v in the equation: Ref. [6]. 

https://www.scirp.org/journal/paperinformation.aspx?paperid=77499
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When we measure a speed v (relative to our Earth), in fact for the time t inside the 

spacecraft, it is as if the spacecraft were going at the speed   𝒗 . 𝜸𝟐  and so I have to increase the 

max speed of c in the equation. 

When v tends to c, the new coefficient  𝛄  tends to 

 

𝜸 =
𝟏

√(𝟏 −  
𝒄𝟐

(𝒄.𝜸𝟐)𝟐
)

 =  
𝟏

√(𝟏 −  
𝟏

𝜸𝟒
)

   

 

When v tends to c, the old value of   𝛄  tends to infinity and therefore the new value of  𝛄  

tends to 1 (see the  equation above). 

In fact the coefficient  𝛄   increases until v reaches v0 (indeed, the theoretical speed  𝒗 . 𝜸𝟐  

increases between v1 and v0  and goes from v1 (theoretical speed obtained for the measured 

speed v1 and equal to v1) to   𝒗𝟎 . 𝜸
𝟐  ) and when the speed measured from the Earth exceeds v0, 

the coefficient  𝛄   will decrease, until it reaches 1 when v tends towards c. When the measured 

v reaches v0, the theoretical speed, which corresponds to the reduction of the time t inside the 

spacecraft would be equal to  𝒗𝟎 . 𝜸
𝟐 

Then when the speed increases further, the speed measured from our Earth would be v 

(still less than c) and the theoretical speed, which corresponds to the reduction of the time t 

inside the spacecraft would be equal to   𝒗 . 𝜸𝟐  

When v measured tends towards c, the theoretical speed will tend towards   𝒄 . 𝜸𝟐   

And when v tends to c,  𝛄 tends to 1. And therefore, the theoretical speed will tend towards 

c: we find, at the limit when v tends towards c, the same value for the speed measured from our 

Earth and the theoretical speed. 

Between v1  and v0  the following phenomenon will happen: 

The time t inside the spacecraft will start to decrease from v1. Indeed, for the speed v1 

measured from our Earth, the time t is replaced by - t and - t begins to become greater than -1 

only for a speed v higher than v1. And so the time t inside the spacecraft will start to decrease. 

And so everything happens as if the spacecraft were going at a speed greater than v: 

different from   𝒗 . 𝜸𝟐  because t is not only replaced by   𝒕 . (
𝟏

𝜸𝟐
)   but by the full term: 

𝒕. (
𝟏

𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
) 

 

When v tends towards v0, the measured speed will be v0, but as t tends towards 0, we will 

find ourselves in the same case as when v tends towards c, since here too t tends towards 0. 

The theoretical speed will catch up with the theoretical speed  𝒗𝟎 . 𝜸
𝟐  which is obtained at v0, 

when the effect of the external gravity MG is canceled. 

The corrected factor  𝜸  will compensate the effect of the reduction of the time t inside 

the spacecraft:  𝜸   will prevent the theoretical speed from tending towards infinity when v tends 

towards v0 since t tends towards 0 when v tends towards v0 (the calculation of the coefficient  

𝜸  is iterative in the sense that  𝜸  uses its own value for its calculation). 

As soon as the measured speed exceeds v0, the theoretical speed will be less than  𝒗𝟎 . 𝜸
𝟐 

This will be the maximum value for the theoretical speed and also for the value of the coefficient 

𝜸. 
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Then, v can tend towards c, and the theoretical value will also tend towards c, while  𝜸  

tends towards 1. I detail a little bit the theoretical calculation of  𝒗𝟎 . 𝜸
𝟐: When we replace the 

time t with the full term  𝒕. (
𝟏

𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
), the speed v will be replaced by: 

 
𝒗

(
𝟏
𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
)

 

 

Indeed,   𝒗 = (
𝓵

𝜸
) . (

𝟏

𝒕
)  and if I replace t with the full term above, we will find: 

 

𝒗 → (
𝓵

𝜸
) .

(

 
 𝟏

 𝒕. (
𝟏
𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎. 𝜸)𝟐
)
)

 
 

 

 

𝒗 →
𝒗

(
𝟏
𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎. 𝜸)𝟐
)

 

 

When v tends towards v0,  𝜸  is very high because MG is high in front of m: indeed, as 

the effect of gravity is local, if MG is not high in front of m, it would be necessary to be very 

close to the external gravity to have an effect (so that the time t inside the spacecraft is reduced 

by the external gravity). And so I consider that MG is high in front of m (m being the mass of 

a spacecraft for example, moving with a speed measured from our Earth equal to v). 

 

𝒗𝟎  =  𝒄. ( √𝟏 −
𝒎𝟐

𝑴𝑮
𝟐 ) 

 

And so v0  is close to c. 

And so, when v tends towards v0, v will be replaced by a term which will tend towards: 

 

 𝒗𝟎 . 𝜸
𝟐  
 

And so, when v tends towards v0, the theoretical speed will tend towards  𝒗𝟎 . 𝜸
𝟐 

The maximum theoretical speed is thus obtained for v0 (measured speed) 

Similarly, the maximum value of the coefficient  𝜸   is obtained for v0 

 

Calculation of the theoretical maximum speed:  

I call it v3t  

 

𝒗𝟑𝒕 = 𝒗𝟎 . 𝜸
𝟐    (13) 
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 𝜸 =
𝟏

√(𝟏 −  
𝒗𝟐

𝒄𝟐
)

 

 

𝒗𝟎  =  𝒄. ( √𝟏 −
𝒎𝟐

𝑴𝑮
𝟐 ) 

  

 

 𝜸  calculated for  v =  v0  gives the following result: 

 

𝜸 =
𝟏

√(𝟏 −  
𝒗𝟎𝟐

𝒄𝟐
)

 

 

And so     𝒗𝟑𝒕 = 𝒗𝟎 .

(

 
 𝟏

√(𝟏 −  
𝒗𝟎
𝟐

𝒄𝟐
)

)

 
 

𝟐

 

 

We get the following result: 

 

𝒗𝟑𝒕 =  
𝑴𝑮

𝟐

𝒎𝟐 . ( √𝟏 −
𝒎𝟐

𝑴𝑮
𝟐 ) . c            (13) 

 

Calculation of the maximum value for the coefficient  : 

 

𝜸 =
𝟏

√(𝟏 −  
𝒗𝟎

𝟐

𝒄𝟐
)

 

 

𝜸 =
𝟏

√(𝟏 − (𝟏 − ( 
𝒎𝟐

𝑴𝑮
𝟐))

 

 

𝜸 =
𝟏

√
𝒎𝟐

𝑴𝑮
𝟐

 

 

    𝜸 =
𝑴𝑮

𝒎
        (14) 
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I can rewrite the equation (13) as follows: 

 

𝒗𝟑𝒕 =  
𝑴𝑮

𝟐

𝒎𝟐 . 𝒗𝟎               (15) 

 

If MG is very high, v3t will be very high, but this maximum theoretical speed will not be 

infinite! 

 

Remarks: 

 

- The equation of general relativity (2)   𝑴 = 𝜸.𝒎  allows to calculate the maximum 

value of M when v tends towards c: 

This maximum value of M is obtained for the measured speed v0  and for a maximum 

coefficient  𝜸  also obtained for v0.  

 

𝑴𝒎𝒂𝒙𝒊 = 𝜸𝒎𝒂𝒙𝒊 .  𝒎    
 

𝑴𝒎𝒂𝒙𝒊 = 
𝑴𝑮

𝒎
  .   𝒎 

 

𝑴𝒎𝒂𝒙𝒊 =  𝑴𝑮                (16) 

 

The maximum value of the moving mass m, which is the relativistic mass M, will not 

tend towards infinity when v tends towards c but will tend towards the mass MG of the external 

gravity (and this even in the presence of external gravity at proximity to the moving mass m, 

which reduces the time t inside the spacecraft and which therefore helps to increase M)! 

This represents the effect of an external gravity on a moving object of mass m  

(a spacecraft for example). We can notice that the maximum value of M does not depend on 

the mass m. To be more precise, M will tend towards MG when v will tend towards v0 (and so 

MG is the maximum value of M) then when v will exceed v0 (and when v will tend towards c), 

M will tend towards m, since the coefficient  𝜸  will tend towards 1 when v tends towards c. 

I have thus demonstrated that the maximum value of the relativistic mass M of m  

(𝑴 = 𝜸.𝒎), will be at a maximum equal to the cause which gave rise to it and which is the 

external gravity MG: (indeed it is MG which increased the speed of m and thus increased  𝜸  

and which thus increased M until    𝑴 = 𝑴𝑮  
This is one example of my reasonings “to the limits” and the results are in accordance 

with my logic and my intuitions and I have demonstrated it! 

The results of the equations therefore seem consistent. Now I would like to analyze the 

case where there is no external gravity MG: 

When v increases, the time t inside a moving object is reduced by 3 factors: 

 

1st factor: by the 5 equations of the Relativity, it is the 1st term t below 

 

2nd factor: this is the term (
𝟏

𝜸𝟐
) 
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3rd factor: this is the term  (𝟏 −
𝑴𝑮

𝟐

(𝒎.𝜸)𝟐
) 

 

And the global is written as follows: (equation (6) which allow to replace the time t in the 

equations) 

 

𝒕 → 𝒕. (
𝟏

𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎. 𝜸)𝟐
) 

 

When there is no external gravity, t is replaced only by   𝒕 . (
𝟏

𝜸𝟐
) 

And the speed v becomes  𝒗 . 𝜸𝟐 

The formula which defines the coefficient  𝜸  is the following: 

 

𝜸 =
𝟏

√(𝟏 −  
𝒗𝟐

𝒄𝟐
)

 

 

This formula will remain valid until:   𝒗 . 𝜸𝟐 = 𝒄 

Indeed, it is necessary to respect the condition where  v < c 

𝒗 . 𝜸𝟐 = 𝒄    can be written as follows: 

 

𝒗  .  
𝟏

(𝟏 −  
𝒗𝟐

𝒄𝟐
)
  =  c 

 

What can be written:        𝒗𝟐 +   𝒄. 𝒗 − 𝒄𝟐 = 𝟎 

 

The positive value of v which satisfies this equation is: 

 

𝒗 =
(√𝟓−𝟏)

𝟐
 . c = 0,618 . c         (12) 

 

I found the Golden ratio: Ref. [7].   

I cannot explain by physics why I found exactly the Golden ratio and I will look at this 

point later.  

I will name this value v2 

When v exceeds v2, the term  𝜸 should be rewritten as follows since the speed of light c 

cannot be exceeded: 

 

𝜸 =
𝟏

√(𝟏 −  
𝒗𝟐

(𝒄.𝜸𝟐)𝟐
)

         (11) 

 

When there is no external gravity, the 1st term in the equation (6) above, which is t, will 

reduce the time inside the spacecraft up to a speed v2 equal to 0,618 . c    

This speed corresponds to a speed measured from our Earth. 

https://www.scirp.org/journal/paperinformation.aspx?paperid=71561


World Scientific News 153(1) (2021) 1-42 

 

 

-14- 

The 2nd coefficient of the equation (6), which is  (
𝟏

𝜸𝟐
)  will make it possible to reduce the 

time t more significantly than what the current General Relativity Theory provides and will 

create the notion of theoretical speed: which is in fact the real speed seen from inside the 

spacecraft, corresponding to the corrected reduction of t by the factor  (
𝟏

𝜸𝟐
)  

In this case, when the measured speed is equal to v, the theoretical speed is equal to  𝒗 . 𝜸𝟐   

up to a measured speed v2  equal to  0,618 . c    

When v increases and will reach v2, the speed measured by the Earth will be equal to v2, 

but the theoretical speed will already be equal to c. 

If there is no external gravity MG, after v2, the speed measured by the Earth can continue 

to increase up to the maximum value of c (unreachable limit). On the other hand, the theoretical 

speed, which has risen up to c (for a measured speed of v2) will stabilize at c. 

Indeed, the new coefficient  𝜸  (see the equation (11) above) will be reduced, when v will 

increase, and will be equal to 1, at the limit when v tends towards c. 

And so the theoretical speed, which is   𝒗 . 𝜸𝟐, will tend towards  𝒄 . 𝜸𝟐   when v tends 

towards c. And as  𝜸  tends towards 1 when v tends towards c, the theoretical speed will tend 

towards c when v tends towards c. As the theoretical speed was c (for a measured value equal 

to v2) and as it is also equal to c (for a measured value equal to c), we see that the theoretical 

speed will have remained equal to c, when the measured speed increased from v2 up to c. 

The theoretical speed can exceed c (which is the value obtained for v2 because  

𝒗𝟐 . 𝜸
𝟐 = 𝒄)  only with the help of an external gravity to the moving mass m! 

And also the 3rd term of the equation (6) above comes in which is  (𝟏 −
𝑴𝑮

𝟐

(𝒎.𝜸)𝟐
)  

This term will reduce the time t from v1 and up to v0. 

The analysis of this case (with the presence of an external gravity) was carried out above. 

There is a particular point when the measured speed approaches v1: for this speed the time t 

becomes - t and therefore the speed becomes negative with a coefficient - 1 (the instantaneous 

theoretical speed remains negative between the measured speeds v1 and v0: but in fact I prefer 

to talk about the notion of positive speed, which uses a distance traveled so a positive value 

divided by a duration which is a time interval therefore also a positive value, and thus this notion 

of speed is no longer instantaneous but represents a positive value corresponding to an interval 

of time. I make the difference between the instantaneous time t (the time given by the clock) 

and a delta t (∆t)  which is a positive value  (∆t = the time corresponding to a duration, a time 

interval), even if t is negative: indeed a difference of 2 negative values is positive if we look 

for the positive delta between the 2).  

And there is no further reduction of the time t inside the spacecraft since the coefficient, 

in positive value, is equal to 1: and therefore at this speed, the measured speed and the 

theoretical speed (in positive value) are equal. If I represent the positive evolution of the 

theoretical speed between 0 and c, I must specify that the theoretical speed is c when  v > v2   

and remains equal to c until a speed v close to v1 (if there is an external gravity). A little before 

the measured speed v1, the theoretical speed is reduced from c until it is equal to v1 then this 

theoretical speed goes up to a maximum value 

 

𝒗𝟑𝒕 = 𝒗𝟎 . 𝜸
𝟐  =   

𝑴𝑮
𝟐

𝒎𝟐 . 𝒗𝟎       obtained for a measured speed equal to v0.  
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And after, when the speed v measured is greater than v0, the theoretical speed drops back 

to c, obtained for a measured speed equal to c. The reduction of the theoretical speed around 

the measured speed v1 comes from the progressive effect of the external gravity MG. There is 

no discontinuity around the measured speeds v1 and v0 for the effect of the external gravity MG 

and thus the evolution of the theoretical speed is also without discontinuity. 

 

Remarks: 

 

- If there is no external gravity to the moving mass m, the maximum theoretical speed is 

equal to c, and is reached for a measured speed v2 which is equal to 0,618 . c 

For the speed v2, the coefficient  𝜸  is equal to: 

 

𝜸 =
𝟏

√(𝟏 −  
𝒗𝟐𝟐

𝒄𝟐
)

 

 

 𝜸 =
𝟏

√(𝟏 −  𝟎, 𝟔𝟏𝟖𝟐)
= 𝟏, 𝟐𝟕  

 

- The relativistic mass M of the spacecraft of mass m (at zero speed) will therefore 

increase up to a maximum value equal to: 1,27.m (indeed  𝑴 = 𝜸.𝒎 ) 

After  v2 = 0,618.c  the speed measured from the Earth can continue to increase up to c, 

and M will decrease from 1.27m until m (because the coefficient  𝜸  tends towards 1 

when v tends towards c). 

This represents the effect of the additional reduction of the time t obtained by the 

complementary term  (
𝟏

𝜸𝟐
) of the equation (6) 

 

  𝒕 → 𝒕. (
𝟏

𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
)         (6) 

 

- The theoretical speed will not exceed c and M will be limited to 1.27m and therefore 

the energy required for a spacecraft to go from 0,618.c  to a speed measured by the Earth 

close to c will not be infinite! 

The energy required between 0,618.c  and c should even decrease since the relativistic 

mass will pass from 1.27m to m when v will tend towards c. 

 

- When the measured speed exceeds v1 and remains lower than v0, the time t is negative. 

The mass m (for example the mass of a spacecraft) would therefore be in a "space-time" 

where the time t is negative and therefore we would no longer see this mass. But it 

would still be there (its effect would still be present): Ref. [8]. If we want to return to 

the "space-time" where the time t is positive, it suffices to increase the measured speed 

(above v0) or to reduce the speed (below v1). If masses revolve in the universe around 

external gravities, at speeds between v1 and v0, these masses would not be visible 

(because they would be in a "space-time" where t is negative) but their effect would be 

present. This could perhaps explain the 94% missing mass in the universe? Each mass 

https://www.scirp.org/journal/paperinformation.aspx?paperid=99923


World Scientific News 153(1) (2021) 1-42 

 

 

-16- 

which would move at a speed close to v0, would have a maximum relativistic mass, 

equal to the mass MG representing the external gravity! If the measured speed is less 

than v0, the relativistic mass would be less than MG, but it would still be high! In the 

presence or not of external gravity, when v tends towards c, the value of the relativistic 

mass M (which represents the relativistic value of the mass m in motion) does not tend 

towards infinity (M tends towards m when v tends towards c). And so there is an 

incompatibility with the Quantum Mechanics which no longer exists: indeed if the 

relativistic value of M no longer tends towards infinity when v tends towards c, the 

density of matter will no longer tend towards infinity in the theory of General Relativity 

complemented by the equation (6) defined above. And this corresponds to what the 

theory of Quantum Mechanics has demonstrated! I would like now to look at the point 

of the local aspect of the MG gravity effect. Indeed, how to translate that the effect of 

gravity represented by the mass MG decreases with distance? For this I started from the 

equation of the force of attraction between 2 masses which is as follows: 

 

𝑭 =  𝑮 .  
𝒎 .  𝑴𝑮

𝒅𝟐
                       (17) 

 

G  being the constant of universal gravitation 

     G =  6,67.10-11. N.m2.kg-2 

 

F is the force of attraction between 2 masses, m and MG 

d is the distance between the 2 centers of gravity of the 2 masses: d is expressed in m 

(meters). 

F is expressed in Newtons (N) and the masses in kg 

In the equation (17), we can notice that F depends on the squared distance between the 

2 masses. 

I propose to replace the term MG by the following more complete term: 

 

𝑴𝑮  →  𝑴𝑮 . ( 
𝟏

𝟏+ 𝒅𝟐
)          (18) 

 

As for the equation (17), I use the square of the distance between the 2 masses m and 

MG. And I check well that when the distance d tends towards 0, the new value of MG 

tends towards MG . 1: that is to say, the effect of gravity is effectively 100%. And I also 

check that when d tends to infinity the new value of MG tends towards 0:  MG . 0. The 

effect of MG also depends on the speed v of the mass m (a spacecraft for example): but 

we can already see this in the evolution of the theoretical speed when the measured 

speed approaches c. I am therefore not going to add an additional corrective term for 

MG in equation (18) concerning the speed v. In particular, we can notice that when the 

gravity increases (when MG increases), the maximum theoretical speed increases as well 

as v1  and v0. When the  
𝑴𝑮

𝒎
  ratio increases, the effect of gravity is greater and this results 

in the fact that the maximum theoretical speed increases: indeed if d decreases, the new 

corrected value of MG increases, indicating that the effect of gravity is local, and the 

force of attraction between m and MG increases, which increases the speed between m 

and MG. And so the maximum theoretical speed increases when the effect of gravity 
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increases: that is to say, when d decreases (which increases the ratio  
𝑴𝑮

𝒎
 ) and when the 

value of the MG mass increases. And so, if a spacecraft of mass m is very close to a 

"black-hole" with a very high mass MG (which tends towards infinity for example), and 

if it is moving at a very high speed measured from our Earth (to be close to v0), the 

theoretical speed of the spacecraft would tend towards infinity. The value of MG should 

therefore be replaced by the next corrected value 𝑴𝑮 . ( 
𝟏

𝟏+ 𝒅𝟐
)  in all the preceding 

equations. 

 

There are conditions for the following equations: 

 

𝒄. ( √𝟏 −
𝒎𝟐

𝑴𝑮
𝟐 ) 

 

𝒗𝟑𝒕 =  
𝑴𝑮

𝟐

𝒎𝟐
. 𝒗𝟎    

 

v3t is the maximum theoretical speed 

v1  is the value of the measured speed v which satisfies the following equation: 

 

𝑴𝑮

𝒎
  =       

√
  
  
  
  
  

(

 
 
𝟏 + (

𝟏

(𝟏 − 
𝒗𝟐

𝒄𝟐
)
)

)

 
 
     .  

(

 
𝟏

√(𝟏 −  
𝒗𝟐

𝒄𝟐
)
)

  

 

 

The conditions are as follows: 

For v0, the value under the root must be positive: and therefore MG must be greater than m. 

For v1, the above equation has a solution only if   𝑴𝑮 > √𝟐 .𝒎     (I have determined this value 

with Excel software). 

The equations are therefore usable only for the highest condition which is 

 𝑴𝑮 > √𝟐 .𝒎     
 

The minimum values of v1, v0 and v3t  are as follows: 

 
𝒎

𝑴𝑮
  =     

𝟏

√𝟐
 = 𝟎, 𝟕𝟎𝟕  

    v0  =  0,7071 . c 

    v1  = 2,67. 10-5 . c   (we push back v1  to 0) 

    v3t  =  1,414 . c 
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And these values are only valid if m (the spacecraft for example) is at a small distance 

from the mass gravity MG. Indeed, if d increases between m and MG, the value of MG decreases 

and as soon as  𝑴𝑮 < √𝟐 .𝒎 , the condition is no longer met and the equations cannot be used. 

In the equation of v0, we cannot replace m by M (M being the relativistic mass of m:  

𝑴 = 𝜸.𝒎 ), but we can replace MG by the new value of MG which is a function of d. 

The local effect of gravity imposes a maximum distance between m and MG: after this 

distance the gravity has no longer an effect on the reduction of the time t inside a spacecraft of 

mass m, which moves at a measured speed v relative to our Earth. And also it is necessary that 

the mass of the gravity MG (counted at 100% of its value therefore assuming that d = 0) is high 

in front of m to have an effect of the gravity.  

If these 2 conditions are not met, the equations are no longer valid because the local aspect 

is no longer valid (distance too great and mass of gravity MG too low compared to m). 

v3t  =  1,414 . c  is the minimum effect of gravity, and when m is moving at a speed v0 

equal to 0,7071. c  

This minimum theoretical speed v3t  is obtained at a distance d which would have reduced 

MG because of the distance between m and MG. 

We can write it as follows to get the maximum distance d: 

 

𝑴𝑮 . ( 
𝟏

𝟏+ 𝒅𝟐
) =   √𝟐 .𝒎      

 

𝟏 + 𝒅𝟐 =  
𝑴𝑮 

√𝟐 .𝒎   
             (19)   

 

Remark: 

 

In the equation above, d is positive and therefore  𝟏 + 𝒅𝟐   is greater than 1. And so 
𝑴𝑮 

√𝟐 .𝒎   
 > 𝟏      and therefore  𝑴𝑮 > √𝟐 .𝒎          

We find again the condition previously found between MG and m: everything seems 

logical! 

If I take the example of our Earth as being an external gravity to an object of mass m = 1 

kg, I can calculate the distance d from which this gravity no longer reduces the time t inside the 

object of mass m in movement at a speed v. 

The mass of the Earth is 5,972.1024  kg (=  MG). By replacing these values in the equation 

(19) I find a distance d equal to 2.109  km. This distance of 2.109 km is the distance from which 

the Earth's gravity has no longer an effect on reducing the time t at the level of m (and this even 

if m is moving at a speed close to c). I would like now to calculate the force of attraction 

between the 2 masses MG and m, at a distance of 2.109 km, by using the equation (17): 

 

𝑭 =  𝑮 .  
𝒎 .  𝑴𝑮

𝒅𝟐
 

 

By substituting the numeric values in the equation, I find a force F equal to  9,96.10-11  

Newtons (N). This force is very low and also shows that the effect of the Earth's gravity 

becomes negligible at this distance of 2.109 km. 

The equation (17) shows that the Force F is present until infinity for d: and when d tends 

towards infinity, F tends towards 0. There is no theoretical limit for the value of d. But in 
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practice, for our Earth, it is considered that its attraction stops after 900 000 km. And this 

distance can be up to several million of km in the case of a massive planet. If I calculate the 

force F, for a mass m of 1 Kg, located at 900 000 km from the Earth, I find, with the equation 

(17), a force  F = 0,49.10-3  N 

This value is indeed low but remains higher than the previous value of  9,96.10-11 N. 

And so it is coherent to specify that my equation (19) gives the true value of the distance 

between 2 masses m and MG, from which the gravity represented by the mass MG has no 

longer an effect: the force of attraction between these 2 masses becomes negligible and the 

gravity MG no longer reduces the time t at the level of the mass m! And the equation (19) gives 

the value of d for the ratio  
𝑴𝑮

𝒎
 

We cannot say that it is easier to pass in the "space-time" where the time t is negative if 

the external gravity MG to the moving mass m is high or not because the passage in the negative 

time t depends of v0  and of v1 and therefore of the ratio  
𝒎

𝑴𝑮
   AND also of the distance d 

between m and MG. If d is high, the effect of MG decreases and therefore the transition to the 

negative time t is not possible (even if the speed of m is very high and if the value of MG for a 

distance d equal to 0 is very high!). 

On the other hand if MG is very low (for a value of d equal to 0), the distance from which 

the gravity represented by the mass MG has no longer an effect will be very low (see equation 

(19) ) and since the effect of external gravity is necessary to have a transition to the negative 

time t, it will still be more difficult than when MG is greater: indeed the distance range d will 

be greater for the mass m which is in movement with a speed v and thus the mass m will have 

more distance to remain in a negative time t with its speed v when MG is high. 

In addition, if MG is higher, the maximum theoretical speed will be higher, which makes 

it possible to obtain a higher amplification coefficient (see below). 

 

Remarks:  

 

- For light, photons have no mass (m = 0). And so F calculated by equation (17) is equal 

to 0. There is no effect of an external gravity, represented by a mass MG, on photons. 

There is therefore no notion of v1 and v0. And the theoretical speed of the photons is 

limited to c. Everything is consistent. There is no effect of an external gravity which 

increases the theoretical speed up to the value of    
𝑴𝑮

𝟐

𝒎𝟐 . 𝒗𝟎    ! 

- What is the practical use of the notion of theoretical speed? To answer to this question 

I must specify that the speed measured from our Earth is always lower than the speed 

of light, c. On the other hand, the theoretical speed can exceed c, and will have a 

maximum value when the speed v of a spacecraft (for example) reaches the measured 

speed v0  This theoretical speed would be, when v = v0,  equal to    
𝑴𝑮

𝟐

𝒎𝟐 . 𝒗𝟎    This value 

of the maximum theoretical speed can be very high if the external gravity MG to the 

mass m is very high and if m is located at a distance very close to the gravity represented 

by the mass MG 

Being able to exceed c and being able to reach a very high speed value makes it possible 

to lengthen the distances traveled into space (distance carried out by m at a speed much 

greater than c!: the theoretical speed represents the real speed of the spacecraft, seen 

from inside the spacecraft!). The Time T of this trip, seen from the Earth will also be 
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increased, but it will be compensated by the passage in negative time t when m is 

moving at a speed v between v1  and v0. The outward and return journeys made at a 

positive time t will be compensated by the passage in a negative time t and the spacecraft 

will be able to return to our Earth at the same moment of its departure (people on Earth 

will not have aged). There would also be another advantage in being able to exceed c, 

with the notion of theoretical speed: Indeed, a spacecraft of mass m could approach a 

"black-hole" at a distance less than the radius of Schwarzschild Rs. The Schwarzschild 

radius Rs is proportional to the mass of the "black-hole" and inversely proportional to 

the square of c. 

 

𝑹𝒔 =  𝟐 .  
𝑮 .𝑴

𝒄𝟐
 

 

G is the gravitational constant 

M is the mass of the "black-hole" 

 

Indeed, for a distance equal to this radius Rs, a spacecraft must reach the speed of light 

c to free itself from the attraction of the "black-hole": as the measured speed cannot 

exceed c, the spacecraft cannot approach at a distance less than this radius: if it does so, 

it will no longer be able to free itself from the attraction of the "black-hole". With the 

notion of theoretical speed which can greatly exceed c, the spacecraft will be able to 

approach at a distance less than Rs and it will then be able to free itself from the 

attraction of the "black-hole" because its speed will be sufficient for that. This advantage 

will allow a spacecraft to be able to enter a "black-hole" by approaching at a distance 

less than Rs, to be able to examine what is happening inside where nothing is visible 

from the outside, then the spacecraft will be able to go out and free itself from the 

attraction of the "black-hole" thanks to a theoretical speed greater than c! 

This point is remarkable because the current physics does not allow it, and the interior 

of a "black-hole" will remain a mystery if we cannot see what is going on there. 

By entering the "black-hole", at a distance less than Rs, the spacecraft must be into the 

"space-time" where the time t is negative so that the people inside the spacecraft can 

withstand the extreme conditions inside the "black-hole" (very high gravity and 

therefore risk of dislocation between the feet and the head created by the difference in 

gravity, very high temperatures, etc.): being at a negative time t makes it possible to not 

disappear, since time goes backwards, and therefore if we were alive before, we remain 

so when t goes back. And to stay at a negative time t inside the "black-hole", the 

spacecraft will have to stay between speeds v1 and v0. Indeed, only in this speed interval, 

the external gravity represented by the mass MG allows the time to become negative 

inside the spacecraft, as explained before. A planet cannot free itself from the attraction 

of a "black-hole" when it begins to enter its field of gravity: indeed, the planet has no 

engine like a spacecraft which could make it change the trajectory or change the speed. 

And so the planet is attracted little by little by the “black-hole”. 

And when a "black-hole" sucks a planet, the mass of the planet will increase the mass 

of the "black-hole" and so the gravity field of the "black-hole" will have a greater range: 

the "black-hole” may attract more and more distant planets. Moreover if the aspirated 

planet is driven by the "black-hole" at a very high speed, close to v0, the relativistic mass 
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of this planet would be at a maximum equal to the mass of the "black-hole" and thus the 

global mass of the "black-hole" will be increased by a very large value, which will 

further extend the distance d from which the "black-hole" can suck up planets. 

This maximum distance d can be calculated with the following equation (19): 

 

𝟏 + 𝒅𝟐 =  
𝑴𝑮 

√𝟐 .𝒎   
       

 

And it will be necessary to update each time the value of the mass MG of the “black-

hole” by adding to it the mass of the aspirated planets and by considering the relativistic 

mass of these aspirated masses which depends on their speeds (and can reach the mass 

of the "black-hole" at a maximum for each of them). 

The distance d will also depend on the mass m of the planet which begins to enter the 

field of gravity of the "black-hole". 

We can notice that as m increases, the effect of external gravity on m is reduced, and 

therefore d decreases. The "black-hole" will easily suck planets of low mass, looking 

for them further away (d increases when m decreases). 

When MG attracts m, the relativistic mass of the mass m increases as its speed increases 

and so the mass m will attract other masses, which in turn will be attracted by the 

external gravity represented by the mass MG because these masses will gradually enter 

the field of gravity of the mass MG. Thus, the mass MG attracts more and more planets, 

or masses m. 

There would also be another interest to be able to exceed the speed of light c, with the 

notion of theoretical speed: Indeed, the energy of the moving mass m will be amplified by the 

increase of the theoretical speed, and will be maximum when the measured speed v is equal to 

the speed v0, which is the measured speed where the theoretical speed is maximum. 

The total energy of the moving mass m is equal to: 

 

E  =    𝜸 ·  𝒎 ·  𝒄𝟐      
 

This equation is given by the current General Relativity theory. But after the measured 

speed v0, I have complemented the theory of General Relativity, with the equations presented 

before, and so the previous formula must also be modified: indeed, the limit speed is no longer 

c but must be replaced by  𝒄 . 𝜸𝟐 

And so the total energy of the moving mass m becomes:   

 

E  =  𝜸 .𝒎 .  (𝒄 . 𝜸𝟐)𝟐      
 

E  =  𝜸 .𝒎 . 𝒄𝟐. 𝜸𝟒      
 

with    𝜸 .𝒎 .  𝒄𝟐    which is the energy calculated by the current General Relativity theory.  

E should be replaced by   𝑬 . 𝜸𝟒       
 

𝑬 →  𝑬 .  𝜸𝟒               (20) 
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On the other hand, the total energy of the mass m does not tend towards infinity, when v 

tends towards c, as the equations of the current General Relativity theory demonstrate. Indeed, 

in this theory the coefficient  𝜸  tends towards infinity when v tends towards c and therefore E 

tends towards infinity. 

In my theory, the coefficient  𝜸  tends towards 1 when v tends towards c and therefore E 

tends towards  E  =  𝜸 .𝒎 .  (𝒄 . 𝜸𝟐)𝟐   with  𝜸  which tends towards 1 and therefore E tends 

towards  𝒎 . 𝒄𝟐  when v tends towards c (with an external gravity, represented by a mass MG, 

to the mass m or without an external gravity, as explained previously), and therefore E does not 

tend to infinity. 

Without the external gravity MG the following term   𝒕. (
𝟏

𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
)   is reduced to  

𝒕. (
𝟏

𝜸𝟐
) . The term  (

𝟏

𝜸𝟐
), which modifies the time t in the equations of the General Relativity, 

allows by itself to prevent the energy E from tending towards infinity! This point justifies by 

itself that this term exists: it complements the current theory of the General Relativity. 

After this, I have added the following term related to gravity, (𝟏 −
𝑴𝑮

𝟐

(𝒎.𝜸)𝟐
), which is the 

equivalent of the effect of the speed v on the time t. I have defined this term in the same way 

as the term  (
𝟏

𝜸𝟐
)  to keep the reasoning consistent (see the paragraph linked to this point in this 

document). 

Everything thus seems logical and justified to me and this in a physical way (that is to 

say, which corresponds to a logic justified by physical equations). 

In my theory, the energy is maximum for the speed v0  and is amplified for this speed v0  

by comparing  𝑬 . 𝜸𝟒  to the total energy E of the moving mass m calculated with the current 

theory of the General Relativity. The coefficient  𝜸  is maximum for v = v0. And for the speed 

v0,  𝜸   is equal to   
𝑴𝑮

𝒎
 

And so the maximum energy of the moving particle is:     

 

 𝑬 →  𝑬 .  
𝑴𝑮

𝟒 

𝒎𝟒 
           (21)   

  

The total energy E of the moving mass m, calculated with the equations of the current 

General Relativity theory is amplified by the effect of the external gravity to the mass m, 

represented by the mass MG and is multiplied by    
𝑴𝑮

𝟒 

𝒎𝟒 
   when the measured speed reaches the 

speed v0. And at this speed v0, the amplification of the total energy is maximum. 

When the measured v exceeds v0, the total energy of the moving mass m will decrease 

and will go from   𝑬 .  
𝑴𝑮

𝟒 

𝒎𝟒 
  to   𝒎 . 𝒄𝟐 

Indeed, the total energy of the mass m will be at the limit equal to   𝒎 . 𝒄𝟐   when the 

measured v tends towards c, and therefore will not tend to infinity. I have made a numerical 

application for an hydrogen atom which consists of a nucleus (a proton) around which an 

electron revolves.  

The external gravity is represented here by the proton of mass MG = 1,672649.10-27 kg 

The moving mass, m, is here represented by the electron of mass m = 9,109.10-31 kg 
𝑴𝑮

𝒎
  = 1,83.103 
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The calculated value of v0 is:   v0 = 0,999…99 . c   (7 digits 9) 

The maximum amplification of the total energy E of the moving mass m, calculated with 

the equations of the current General Relativity theory, is a multiplying factor equal to 
𝑴𝑮

𝟒 

𝒎𝟒 
   

when the measured speed reaches the speed v0. This multiplying factor is therefore equal to: 

(1,83.103  )4 = 1,12.1013  

There is therefore an enormous amplification factor of the total energy of the moving 

electron around the nucleus for the measured speed v0: this is linked to the effect of the external 

gravity to the electron and which is represented by the mass of the proton. 

It sounds like a resonance in mechanics 

It is thus necessary to aim for the measured speed v0 to make the most of this amplification 

of energy by exciting the electrons so that they reach the measured speed v0: this opens up 

avenues of research to optimize lasers for example or in particles accelerators in order to make 

collisions between protons at optimized velocities v0 to take advantage of the maximum kinetic 

energy of the particles on impact. 

The speed v0 must be exceeded a little so as not to reduce too much the total energy of 

the moving mass m, and being at a measured speed greater than v0, the mass m would be in a 

"space-time" where the time t is positive and therefore we could see this mass m. 

This amplifying coefficient equal to 1,12.1013  must be reduced a little because the effect 

of external gravity is local and therefore the distance between the electron and the proton must 

be introduced. We must use the following equation and replace the value of the mass of the 

external gravity MG: 

 

𝑴𝑮  →  𝑴𝑮 . ( 
𝟏

𝟏+ 𝒅𝟐
)  

 

but the distance d is small in the example of the hydrogen atom and therefore the influence of 

d is considered negligible. 

The distance d between the proton and the electron is equal to 53.10-12  m. The distance 

from which the gravity of the proton has no longer an influence is calculated with the following 

equation: 

 

𝟏 + 𝒅𝟐 =  
𝑴𝑮 

√𝟐 .𝒎   
       

 

With  
𝑴𝑮

𝒎
  = 1,83.103 

 

I find a dmaxi value equal to 35,958 m (meter) 53.10-12  m is therefore very negligible 

compared to 35,958 m and there is therefore no reason to correct the amplifying coefficient 

equal to 1,12.1013 
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I can summarize the previous elements by the following graphic: 

 

 
 

Figure 1. Measured speed and Theoretical speed. 
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I will now approach more precisely the complements that I wish to bring to my equation 

on the time t at the level of a moving mass m, located in the field of gravity (therefore close) to 

an external mass MG and this part will therefore complement my following equation defined 

before: 

 

 𝒕 → 𝒕. (
𝟏

𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
)         (6) 

 

I have to introduce the parameter Rs which is the Schwarzschild radius to explain why I 

want to add a term to the previous equation. Rs is linked to the presence of Gravity (some 

masses) into the Space and in particular to the presence of "black-holes":  Refs. [9] [10] [11] 

[12] [13].  

“Black-holes”, like any Gravity, have a theoretical border: This boundary is demarcated 

by the Schwarzschild radius which defines a surface called the “horizon”. 

The phenomena get complicated when the “black-holes” are in rotation: this is Kerr's 

metric. But the conclusions are the same as the Schwarzschild metric (“black-hole” not rotating 

and therefore static) when we cross the horizon also called "the horizon of events": Ref. [14].  

The “black-hole” is characterized by an enormous mass and causes an enormous Gravity 

which distorts the “space-time” all around. The speed of release of a planet revolving around a 

“black-hole”, equal to the speed of light, c, allow to calculate the radius of Schwarzschild Rs: 

at this distance from the center of a “black-hole” a planet can escape from the “black-hole” only 

if its speed is equal to c. For a distance less than this radius, the release speed must be greater 

than c and therefore as this is impossible, nothing can come out of it. 

The Schwarzschild radius Rs is proportional to the mass of the “black-hole” (or a Gravity, 

such as the mass of a Planet for example) and inversely proportional to the square of c. 

 

𝑹𝒔 =  𝟐 .  
𝑮 .𝑴𝑮

𝒄𝟐
 

 

G is the gravitational constant 

G =  6,67.10-11. N.m2.kg-2 

MG is the mass of the "black-hole" 

We can notice that Rs does not depend on the mass of the Planet which revolves around 

the “black-hole” (or of a spacecraft). If a spacecraft approaches the “black-hole” and drops 

below the Schwarzschild radius it is said that the spacecraft is crossing the “horizon of events”. 

Everything behind the “horizon” has no way for going out and increases the mass of the “black-

hole”. The most astonishing properties are those which concern the distortion of time around a 

“black-hole”. Time passes more slowly in a strong gravitational field. It is in the extreme case 

of a “black-hole” that this kind of effect is particularly spectacular. As you approach a “black-

hole”, the time t inside the spacecraft will decrease (as if you were increasing the speed of the 

spacecraft). The time t will tend to 0 if the spacecraft approaches the “horizon of events”. If the 

spacecraft crosses the “horizon of events” the time will become zero (time will seem to stop) 

and if the spacecraft continues to approach the center of the “black-hole” the time will become 

negative. Indeed, gravity is so strong that a speed greater than the speed of light will be needed 

to escape from the “black-hole”, below the Schwarzschild radius: and as c cannot be exceeded, 

it is the time t that will become negative by continuity. The time inside the spacecraft decreases 

https://www.scirp.org/journal/paperinformation.aspx?paperid=73137
https://www.scirp.org/journal/paperinformation.aspx?paperid=98091
https://www.scirp.org/journal/paperinformation.aspx?paperid=93130
https://www.scirp.org/journal/paperinformation.aspx?paperid=86704
https://www.scirp.org/journal/paperinformation.aspx?paperid=76926
https://www.scirp.org/journal/paperinformation.aspx?paperid=103641
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as it approaches the Schwarzschild radius, cancels itself when reaching this radius and then 

continues to decrease (and so the time becomes negative) when the spacecraft crosses the 

Schwarzschild radius and approaches the center of the “black-hole” because Gravity is still 

increasing. 

This happens when the spacecraft has a zero speed when approaching the “black-hole”. 

And seen from the outside, the spacecraft will take an infinite time T to cross the Schwarzschild 

radius (because v seems to be equal to 0 and   𝑻 =
𝓵

𝒗
 ). But if the spacecraft arrives with a speed 

v close to c it is the same thing: if it crosses the “horizon of events”, it will not be able to go 

back. Current physics therefore considers that when a spacecraft of mass m is going to be at a 

distance d equal to Rs from a "black-hole", the time in the spacecraft would seem frozen:  

t = 0. 

Inside the spacecraft, the time would seem to be frozen as we passed through the 

Schwarzschild's radius, and we would not even notice it (it would take a time t equal to 0). 

These points are therefore missing in my equation on the time t at the level of a moving 

mass, close to an external Gravity. 

I must therefore add an additional term to the equation (6) above which takes into 

account Rs and d: 

I propose the following complementary term: 

 

(𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)    

 

The equation (6) thus becomes the following equation (22): 

 

𝒕 → 𝒕. (
𝟏

𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
). (𝟏 −

𝑹𝒔𝟐

𝒅𝟐
)          

 

We check well the following points: 

 

- When d = Rs, the coefficient  (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)  is equal to 0 and so the time  t = 0 

- When d < Rs, the coefficient  (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)   is less than 0 and the term becomes negative, 

therefore t becomes negative. More precisely, the coefficient   (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)    

will change the sign of t when d < Rs: if t was positive before, it would become negative 

and also if t was negative before, it would become positive. 

 

The fact that the coefficient (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)   makes it possible to change the sign of t when 

d becomes less than Rs is conform to current physics. Indeed, some physicists have 

shown that something happens when we cross the Schwarzschild radius Rs, and in 

particular that the time t could become negative: Refs. [15] [16] [17]. 

 

- When d > Rs,  the coefficient  (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)   is between 1 and 0: it well reduces the time 

t and approaches 1 when d becomes high. When d becomes high, Rs has no longer an 

effect on the time t, which is logical: the gravity of the “black-hole” has no effect on the 

https://www.scirp.org/journal/paperinformation.aspx?paperid=93433
https://www.scirp.org/journal/paperinformation.aspx?paperid=100256
https://www.scirp.org/journal/paperinformation.aspx?paperid=101683
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time t when we are far from the “black-hole” and the current physics is so not modified 

when the spacecraft remains close to our Earth for example. 

In other words, the effect of a planet is very small on the reduction of the time t at the 

level of a close spacecraft, following the addition of the term (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
), because the 

planet's gravity is not high enough: it is necessary to reach the mass of a “black-hole” 

for example to see an effect on the reduction of t when approaching. 

I will make a numerical application to confirm this point after the following remarks. 

 

Remarks: 

 

- It should be noted that the coefficient  (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)  becomes less than -1 when  

d < 0,707. Rs 

The effect of gravity is a local term and we can thus consider that when the coefficient 

is less than -1, it does not reduce t and therefore the coefficient no longer has an effect. 

Everything would happen as if the term   (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)   no longer exists when  

d < 0,707. Rs  

And so the time t would be negative (in fact the sign of the time t will change) only 

when d is between 0,707. Rs and Rs. When d is less than 0,707. Rs, the time t would 

become positive again (more precisely, the coefficient   (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)   would not change 

the sign of t when  d < 0,707. Rs  with respect to the sign of t when d > Rs). 

 

- The term   (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)   respects the structure of the other terms of the equation (6): they 

are all in the form (1  -  a ratio of 2 terms squared and these 2 terms are of the same 

nature with one of the 2 terms which tends towards the limit of the other term). In the 

case of the term   (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
), the numerator and the denominator are both distances and 

we look at the effects of d when d increases or decreases, up to the limits (d tending 

towards infinity and towards 0). 

As a reminder, the 1st term of the equation on the time t is  (
𝟏

𝜸𝟐
)  and as   

𝜸 =
𝟏

√(𝟏 −  
𝒗𝟐

𝒄𝟐
)

, this term is therefore equal to:   (
𝟏

𝜸𝟐
) = ( 𝟏 −  

𝒗𝟐

𝒄𝟐
 )  and thus this term 

also respects the shape of the previous structure. 

 

- The term   (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)   is very close to 1 if the external gravity is created by a low mass. 

For example, if we take our Earth as an external gravity to a spacecraft landed on the 

Earth, as Rs of the Earth is very small (Rs = 8,869 mm), we cannot reach it because Rs 

is a lower distance than the radius of the Earth! And d, even on the surface of the Earth, 

will be very high in front of Rs and therefore the term  (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)  will be very close to 

1. The term  (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)   becomes small in front of 1 only when the mass of the external 
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gravity MG is very high, like the mass of a “black-hole” for example. I will now make 

a numerical application with our Earth as being the external gravity MG to a spacecraft 

of mass m landed on the Earth and I will calculate the effect of the term  

 (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)  on the reduction of the time t at the level of the spacecraft. 

 

Numerical Application: 

 

Calculation of the reduction of the time t by the term  (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)   at the level of a 

spacecraft of mass m landed on our Earth: 

 

𝑹𝒔 =  𝟐 .  
𝑮 .𝑴𝑮

𝒄𝟐
 

 

G is the gravitational constant 

G =  6,67.10-11. N.m2.kg-2 

MG is the mass of our Earth 

The mass of our Earth MG is equal to: MG = 5,972.1024 Kg 

c  is the speed of light 

c = 300 000 km/s 

The calculation of Rs, by replacing the terms of the equation  𝑹𝒔 =  𝟐 .  
𝑮 .𝑴𝑮

𝒄𝟐
   by the 

preceding numerical values, leads to the following result: Rs = 8,869 . 10-3 m = 8,869 mm 

It can be noticed that the calculation of Rs does not depend on the mass m of the 

spacecraft d = 6371 km = 6 371 000 m  (this is the radius of our Earth) 

We can thus calculate the value of the complete term  (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)    

 

(𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)   = (𝟏 −

(8,869 .10−3 )𝟐

6 371 000 𝟐
)  

 

(𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)  =   1 – (1,9379 . 10−18)  

 

The term 1,9379 . 10-18  is very small in front of 1, so that the coefficient   (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)   is 

very close to 1, and remains less than 1. In other words, the time t is hardly reduced at the level 

of the spacecraft landed on our Earth by the coefficient   (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
). I have described before the 

concept of theoretical speed which can exceed the speed of light, c. Indeed, the speed of light c 

is a measured speed and cannot be exceeded. On the other hand, the theoretical speed can 

exceed c, and I refer you to my explanations before. 

The theoretical speed represents the actual speed of the spacecraft, seen from inside 

the spacecraft!, in relation to the complete and corrected reduction of the time t with my 

equation. 
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The equation presented before on the time t is modified by the term  (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
), but this 

does not change the reasoning for theoretical speed.  

In particular, I wrote the following paragraph before and I would like to come back to this 

point: 

“There would also be another advantage in being able to exceed c, with the notion of 

theoretical speed: Indeed, a spacecraft of mass m could approach a "black-hole" at a distance 

less than the radius of Schwarzschild Rs. 

Indeed, for a distance equal to this radius, a spacecraft must reach the speed of light c to 

free itself from the attraction of the "black-hole": as the measured speed cannot exceed c, the 

spacecraft cannot approach at a distance less than this radius: if it does so, it will no longer be 

able to free itself from the attraction of the "black-hole". With the notion of theoretical speed 

which can greatly exceed c, the spacecraft will be able to approach at a distance less than Rs 

and it will then be able to free itself from the attraction of the "black-hole" because its speed 

will be sufficient for that. This advantage will allow a spacecraft to be able to enter a "black-

hole" by approaching at a distance less than Rs, to be able to examine what is happening inside 

where nothing is visible from the outside, then the spacecraft will be able to go out and free 

itself from the attraction of the "black-hole" thanks to a theoretical speed greater than c! 

This point is remarkable because the current physics theory does not allow it, and the 

interior of a "black-hole" will remain a mystery if we cannot see what is going on there. 

By entering the "black-hole", at a distance less than Rs, the spacecraft must be into the 

"space-time" where the time t is negative so that the people inside the spacecraft can withstand 

the extreme conditions inside the "black-hole" (very high gravity and therefore risk of 

dislocation between the feet and the head created by the difference in gravity, very high 

temperatures, …): being at a negative time t makes it possible to not disappear, since time goes 

backwards, and therefore if we were alive before, we remain so when t goes back. 

And to stay at a negative time t inside the "black-hole", the spacecraft will have to stay 

between speeds v1 and v0.  Indeed, only in this speed interval, the external gravity represented 

by the mass MG allows the time t to become negative inside the spacecraft, as explained before”. 

I would like now to return to what I wrote before: 

“ Everything would happen as if the term  (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)  no longer exists when d < 0,707. Rs 

And so the time t would be negative (in fact the sign of the time t will change) only when d is 

between 0,707. Rs and Rs.” 

I have indeed shown that if a spacecraft (for example) crosses the Schwarzschild radius 

Rs, the time t will become negative (would change it’s sign in fact), and this depending on the 

speed of the spacecraft: 

If the speed v of the spacecraft is zero, or less than v1, (I am not replacing v1  by v4  here 

otherwise I would count by doing this 2 times the effect of the term  (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
): v4  is defined 

later in this document), the spacecraft is into the "space-time" where the time t is positive and 

if it crosses Rs, it will pass into the “space-time” where the time t is negative. But as its speed 

is less than v1, the maximum theoretical speed for v < v1   is equal to c (see the synthesis before) 

and as d < Rs, a speed greater than the speed of the light c would be needed to come out of 

Rs… And therefore we will no longer be able to come out of Rs, even if we remain alive since 

we are into the “space-time” where the time t is negative, since d would be between 0,707. Rs  

and  Rs. If, on the other hand, the speed of the spacecraft is greater than v1, but remains lower 
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than v0, the spacecraft is into the “space-time” where the time t is negative and if it crosses Rs, 

it will change again the “space-time” since the term  (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)   is negative… and the spacecraft 

will now be into the  “space-time” where the time t is positive: and in this case we will no 

longer remain alive inside the spacecraft because the exterior conditions would be extreme 

(gravity and temperature too high +…). 

And so there too, if the speed of the spacecraft is between v1 and v0, we could not enter 

Rs (d cannot be less than Rs). 

Now it remains the case where the speed, measured from our Earth, of the spacecraft 

would be greater than v0: in this case, the spacecraft would be into the “space-time” where the 

time t is positive and crossing Rs, it would be into the “space-time” where the time t is negative. 

The theoretical speed is greater than c when v > v0   (see the synthesis before) and therefore the 

spacecraft could come out of the “black hole”! 

The spacecraft should not go to  d < 0,707. Rs  otherwise it would return into the “space-

time” where the time t would be positive and living conditions would be impossible. We thus 

find again the condition  d > 0,707. Rs 

And so, by pushing the reasoning to the limit, this case would be the only possible case! 

and thus it would be theoretically possible to cross Rs (d can be less than Rs) and we could 

come out of the “black-hole”! 

There would also be another constraint by approaching Rs: indeed if I take the case of the 

"black-hole" of our Galaxy, Rs calculated for the "black-hole" Sagittarius A is equal to 7,8 

millions of km. But the value of its radius measured by physicists would be 22 millions of km! 

And so before arriving at Rs, we might encounter some Matter, which would physically prevent 

us from being able to get closer to Rs! 

We would find ourselves in the same case as for our Earth, where the value of Rs is  

8,869.10-3 m  and the radius of the Earth is  6 371 000 m ! The condition for entering Rs has 

therefore changed now compared to what I have written before: “To stay at a negative time t 

inside the “black-hole”, the spacecraft will have to stay between speeds v1  and  v0. Indeed, only 

in this speed interval, the external gravity represented by the mass MG allows the time to 

become negative inside the spacecraft ”. 

Now, by adding the coefficient (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)  I have shown that a speed greater than v0  is 

needed for the spacecraft to be able to move in and out of Rs. But in the case of a "black-hole", 

the value of v0  is very close to c, and it will be necessary to be careful to always stay above v0 

(speed measured from our Earth) to stay alive: the condition is therefore more severe than at 

the beginning of this document. 

We remain consistent with current physics, which states that we cannot go to a distance 

d less than Rs, otherwise we can no longer come out of the “black-hole”. I proved above that 

we could theoretically do it, but the conditions to get there are very difficult to meet: we could 

go there, at the limit, but the caution here would be to stay at  d > Rs ! (risk of contact with 

Matter +…). 

As soon as a planet enters the gravitational field of a "black-hole", it can no longer escape 

and it is sucked in. On the other hand a spacecraft, which has an engine, could come out of Rs 

of a "black-hole" if its motorization allows it to go at a speed measured from our Earth higher 

than v0  so as to be able to have a theoretical speed higher than c. If I take the example of the 

"black-hole" of our galaxy, Sagittarius A, the gravitational field stops at 6,34 light-years for a 

spacecraft with a mass of 1000 Kg (for example). Any mass of less than 1000 kg located at less 
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than 6,34 light-years of Sagittarius A will be sucked in and will not be able to escape. Our Earth 

is located at 25 640 light-years from Sagittarius A and therefore there is no risk of being sucked 

into this “black-hole” (and also, as the mass of the Earth is greater than 1000 Kg, the distance 

of 6,34 light-years would be reduced because the effect of the external gravity of the “black-

hole” is reduced on an increasing mass). 

If I push the reasoning to the limit, any planet which would be sucked by a "black-hole" 

will arrive at Rs with a speed very near to c, because the “black-hole” has attracted the planet 

since a long time and has increased continuously it’s speed until tending to reach the maximum 

speed of c. And so by crossing Rs, since the speed of the planet is greater than v0, the planet 

will go from a positive time t to a negative time t. As the speed of the planet is very close to c, 

its relativistic mass will be equal to its mass at rest (see before) and its repulsive gravitational 

force (since t is negative at its level : see after for this point) will be less than the attractive 

gravitational force of the "black-hole"! and thus the planet will continue to be sucked by the 

"black-hole". 

Then when d will become less than 0,707. Rs,  the sign of the time t will change again 

and will become positive. 

The mass of the planet, m, will thus become attractive again, will be visible, and will 

increase the mass of the “black-hole”. The "increase" in mass of the “black-hole” will be equal 

to the resting mass of the planet and not its relativistic mass (otherwise it would be infinite since 

v is equal to c, at the limit, according to current physics). 

The mass of the planet at rest will thus increase the mass of the "black-hole" which will 

have sucked this planet, which is consistent with current physics. 

Adding the coefficient  (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)  able us to find conditions for any speed v, between 0 

and c, so that a mass m moving at v is at a negative time t! 

Indeed, when d > Rs, the speed v of a spacecraft (for example) would have to be between 

v1  and  v0  for the time t to be negative. 

If d < Rs and as long as  d > 0,707. Rs, the time t would be negative if the speed v is 

between 0 and v1. 

If d < Rs and as long as d > 0,707. Rs, the time t would be negative if the speed v is 

greater than v0. 

On the other hand, adding the coefficient  (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
), do not change my initial reasoning: 

it is the passage of the mass m (a spacecraft for example) to a negative time t, during a part of 

the travel, which would allow us to be able to make a far-away travel into Space, at high speed, 

and to be able to find unaged people on our Earth when we return, such as people who have 

traveled into the spacecraft. This is not possible with current physics: the people who remained 

on Earth would have aged much more than those who traveled into the spacecraft moving at 

high speed (close to c). I will now analyze in more detail what the addition of the coefficient  

(𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)   to my equation on the time t has changed for the conditions for which a mass m (a 

spacecraft for example) could be found into a “space-time” where the time t would be negative, 

in particular for the calculations of speeds  v1  and  v0. For the calculation of the speed v0, this 

does not change anything, because of the definition of the speed v0. The calculations presented 

before are therefore correct. On the other hand, for the speed v1, there is a modification to make 

and I will explain myself on this point: The value of  v1 is the speed which allows the following 

equality, which transforms t into - t: 
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(
𝟏

𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
)  =  −𝟏 

but now with the addition of the term  (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)   the equation (6) before has become the 

equation (22): 

 

𝒕 → 𝒕. (
𝟏

𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
). (𝟏 −

𝑹𝒔𝟐

𝒅𝟐
) 

 

And so the speed v1 would now be the speed v4 which would also allow the following 

equality, and which transforms t into - t:  

 

(
𝟏

𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
). (𝟏 −

𝑹𝒔𝟐

𝒅𝟐
) =  −𝟏 

 

This speed would be the speed v4  and when the speed of the spacecraft will be greater 

than v4  the time t would start to become negative at the level of the spacecraft of mass m, and 

this up to the speed v0. And when the speed will be greater than v0, the time t at the level of the 

spacecraft will become positive again. 

If I develop the previous equality I end up with: 

 

(
𝟏

𝜸𝟐
) − (

𝑴𝑮
𝟐

𝒎𝟐.  𝜸𝟒
) =  − 

𝟏

(𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)
 

 

𝑴𝑮
𝟐

𝒎𝟐.  𝜸𝟒
 =  (

𝟏

𝜸𝟐
) + 

𝟏

(𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)
 

 

𝑴𝑮
𝟐

𝒎𝟐
= 𝜸𝟐 +  𝜸𝟒  .  

𝟏

(𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)
 

 

𝑴𝑮

𝒎
  =   𝜸 . ( √(𝟏 + 𝜸

𝟐.
𝟏

(𝟏 − 
𝑹𝒔𝟐

𝒅𝟐
)
)

 

  )        (23) 

 

This equation has a solution only if d > Rs. I find again the condition mentioned earlier 

in this part of the book where it is theoretically possible to go to d < Rs  but there would be 

some obstacles (presence of Matter, need to stay very close to the speed of light, …). And so, 

as I consider that the spacecraft would stay at a distance greater than Rs from the center of the 

"black-hole", this equation would have a solution and we will find a speed v4  from which the 

time t at the level of the spacecraft will start to become negative. When v is greater than v4, the 

time t at the level of the spacecraft will start to become negative and will remain negative until 

the speed reaches v0 which is greater than v4. 
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It is now necessary to consider the speed  v4  instead of the speed v1, each time the speed 

v1 is mentioned and so replace v1  by v4 
The speed v4  is lower than the value of the speed v1 presented before. And under these 

conditions, when the speed v is less than v4, the following term:  

 

(
𝟏

𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
). (𝟏 −

𝑹𝒔𝟐

𝒅𝟐
)     

 

will become less than - 1 and will therefore no longer reduce the time t at the level of the moving 

mass m close to the external gravity MG. 

The effect of gravity is a local term and we can thus consider that when the above term 

is less than - 1, it does not reduce t and therefore the term related to gravity no longer has an 

effect. Everything would happen as if the terms  (𝟏 −
𝑴𝑮

𝟐

(𝒎.𝜸)𝟐
). (𝟏 −

𝑹𝒔𝟐

𝒅𝟐
)    no longer exist when 

the effect of gravity is too weak. And under these conditions the following equation (22) will 

be reduced: 

 

𝒕 → 𝒕. (
𝟏

𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
). (𝟏 −

𝑹𝒔𝟐

𝒅𝟐
) 

 

The equation (22) above will be reduced to the following equation when v is less than v4:  

 

𝒕 → 𝒕. (
𝟏

𝜸𝟐
) 

 

So that the time t can become negative, it is thus necessary that the external gravity MG 

to the moving mass m is sufficiently high compared to m and that the speed of m is also 

sufficient: these conditions result in the condition v > v4 (v being the speed of m, a spacecraft 

for example). And so that the external gravity MG to the moving mass m is sufficiently high 

compared to m, the distance d between m and MG must be sufficiently small. Indeed, there is 

a relation, which I have presented before which shows how the value of MG corrected changes 

with the distance d: 

 

𝑴𝑮  →  𝑴𝑮 . ( 
𝟏

𝟏+ 𝒅𝟐
)       (18) 

 

The new MG value therefore decreases as d increases, and it is this corrected MG value 

that must be used in the term   (𝟏 −
𝑴𝑮

𝟐

(𝒎.𝜸)𝟐
)  of the following equation (22): 

 

𝒕 → 𝒕. (
𝟏

𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
). (𝟏 −

𝑹𝒔𝟐

𝒅𝟐
) 

 

In other words, the distance d between m and the external mass MG will impact the 

calculation of the speed v4, which is the condition from where the time t can start to become 

negative at the level of m. 

Indeed, v4  is the speed which allows the following equality 
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𝑴𝑮

𝒎
  =   𝜸 . ( √(𝟏 + 𝜸

𝟐.
𝟏

(𝟏−
𝑹𝒔𝟐

𝒅𝟐
)
)

 

  )        (23) 

 

And the speed v of the moving mass m (a spacecraft for example) must be greater than 

v4  so that the time t can pass into the “space-time” where the time t is negative. To take into 

account the distance d in the previous equality, we must consider the corrected value of MG. 

And therefore replace MG  by   𝑴𝑮 . ( 
𝟏

𝟏+ 𝒅𝟐
)   in the 1st term of the equality above. The equation 

(23) thus becomes the following equation (24): 

 

𝑴𝑮

𝒎
 . ( 

𝟏

𝟏+ 𝒅𝟐
)   =   𝜸 . ( √(𝟏 + 𝜸

𝟐.
𝟏

(𝟏−
𝑹𝒔𝟐

𝒅𝟐
)
)

 

  )        (24) 

 

In order for the time t to begin to become negative at the level of m and so that the terms 

will reduce the time, the following terms of the equation (22) must be greater than – 1 

 

(
𝟏

𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
). (𝟏 −

𝑹𝒔𝟐

𝒅𝟐
)  >  −𝟏 

 

If I develop this equation I come to 

 

𝑴𝑮

𝒎
 <    𝜸 . ( √(𝟏 + 𝜸

𝟐.
𝟏

(𝟏−
𝑹𝒔𝟐

𝒅𝟐
)
)

 

  )     

 

And if I replace MG  by   𝑴𝑮 . ( 
𝟏

𝟏+ 𝒅𝟐
), I find the following equation (25): 

 

𝑴𝑮

𝒎
 . ( 

𝟏

𝟏+ 𝒅𝟐
)   <    𝜸 . ( √(𝟏 + 𝜸

𝟐.
𝟏

(𝟏−
𝑹𝒔𝟐

𝒅𝟐
)
)

 

  )  

 

We can notice that when d tends towards Rs (in higher value), the right term tends 

towards infinity and therefore this inequality would always be true, even if the speed v of the 

moving mass m would be equal to 0: there would be no more minimum speed condition v4 so 

that m can go to a negative time t. This value of d can be calculated with the preceding 

inequality. 

We can therefore calculate the value of d, to satisfy the previous inequality, by taking 

v = 0 for this calculation. 
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𝜸  = 1 when v = 0 because    𝜸 =
𝟏

√(𝟏 −  
𝒗𝟐

𝒄𝟐
)

  and thus the equation (25) becomes the following 

equation (26): 

 

𝑴𝑮

𝒎
   <     (𝟏 + 𝒅𝟐) . ( √(𝟏 + 

𝟏

(𝟏−
𝑹𝒔𝟐

𝒅𝟐
)
)

 

  )  

 

The value of MG  in the preceding equation is not the corrected value of MG. 

A numerical application (see below) has shown that d must be very close to Rs (in higher 

value), so that equation (26) is respected and therefore v4  will tend towards 0 when d will tend 

towards Rs but v4  will not be equal to 0 since we cannot reach Rs (we are in the case where d 

is always greater than Rs: see above). The value 0 is therefore a limit value for v4, when we 

push our reasoning to the limit. 

I have added the following coefficient to the equation on the reduction of the time t at the 

level of a moving mass m:   (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
) 

This coefficient has no consequence when the mass m (a spacecraft for example) is far 

from the external gravity MG to m (MG being a "black-hole" like Sagittarius A for example). 

In the numerical application below, I have calculated that if   d = 752,56 . Rs   (a limit for 

excel), the coefficient  (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)  would be equal to 0,9999982 and so very close to 1. 

(indeed, the coefficient   
𝟏

(𝟏−
𝑹𝒔𝟐

𝒅𝟐
)
   for the value of d equal to 752,56. Rs is equal to 1,0000018 

in the numerical application). 

A distance  d = 752,56 . Rs, represents 6,2.10-4  light-years and the distance between the 

“black-hole” Sagittarius A and our Earth is 25 640 light-years. And so a distance  d = 752,56 . 

Rs, represents only 2,4.10-6 %  of the travel  Earth to  Sagittarius A. 

This calculation is showing that for  d = 752,56 . Rs, the spacecraft would be very close 

to Sagittarius A, which would be the external gravity MG to the moving mass m (the spacecraft). 

m is thus very close to MG, for  d = 752,56 . Rs,  and yet the coefficient   (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)    is very 

close to 1 (equal to 0,9999982): thus this coefficient does not change anything to the equation 

on the time t defined before (without this coefficient), when m is not very very close to MG. 

And yet there is a very big difference which shows me that my equation on the time t 

defined with the coefficient   (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
)   is better than the equation without it. 

Let me explain this point which is very important to me: 

Without the coefficient, the more the distance between a spacecraft of mass m approached 

an external Gravity MG (a "black-hole" for example), the more v0  increased and also the more 

v1  increased, until becoming very close to c when MG is very high and d is very small (d being 

the distance between m and MG). 

As the time t can only start to become negative when the speed v of the mass m is greater 

than v1, it was necessary that  v  be close to c when m approached very close to MG. 
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And so, the external gravity MG to the moving mass m did not seem to help for the 

transition to a negative time t, even when approaching MG. 

Indeed, the more m got closer to MG, the more m had to go fast! And that didn't make 

sense to me. But with my equation on the time t, at the level of m, presented with the addition 

of the coefficient   (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
), this point has changed! 

Indeed, with the addition of this term, I have shown (see above) that when d decreases 

and approaches Rs by greater value, v4  tends towards 0. And so, the more m approaches an 

external gravity MG, the more the minimum speed from which the time t can start to become 

negative (which is v4) decreases (until it reaches 0, as I have shown above). And so the external 

gravity MG helps for the passage in a negative time t, at the level of m, when m approaches 

MG! 

The logic is thus respected thanks to the addition of the term   (𝟏 −
𝑹𝒔𝟐

𝒅𝟐
), to the equation 

on the time t at the level of a moving mass m close to MG. 

In other words the external gravity  MG  to a moving mass m has less and less a need 

for the speed v of m to allow the conditions so that the mass m can pass into the "space-time" 

where the time t is negative! and at the limit, the gravity MG alone would allow the passage of 

the mass m to a negative time t: indeed, v4  would be equal to 0 when d would be close to Rs 

(by higher value). We could summarize the previous points as follows: 

A moving mass m (a spacecraft for example) could pass into the "space-time" where the 

time t would be negative only if there is an external gravity MG to the mass m: and this gravity 

MG must be close enough to m. And there is also a condition of minimum speed v4  for m to 

allow the passage of m to a negative time t: this is the cumulative effect of the external gravity 

MG to m and the speed v of m. 

A high speed of the moving mass m (close to the speed of light, c), without an external 

gravity to m, would not be enough for m to pass into a negative time t! 

And if m is very close to MG (low value for d), the minimum speed condition v4  no 

longer exists: in other words, even with a zero speed v4  (but that would be at the limit, when 

d tends towards Rs by higher value), m could pass into a negative time t. It is the external 

gravity MG to m that allows this. 

I would like to come back to the coefficient  𝜸  which has a lot of influence in the theory 

of General Relativity. 

In the theory of General Relativity  𝜸  is defined as the following quantity: 

 

𝜸 =
𝟏

√(𝟏 −  
𝒗𝟐

𝒄𝟐
)

= 𝜸𝟏    

 

I will call this coefficient  𝜸𝟏    

When there is no external Gravity MG to a mass m moving at a speed v, when v tends 

towards c, the coefficient  𝜸𝟏  tends towards infinity. And this makes it possible to freeze the 

time t at the level of the mass m (a spacecraft for example): indeed, t tends towards 0, under 

these conditions. When there is an external Gravity MG to the moving mass m, I have 

introduced the theoretical speed before. 
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The theoretical speed is in fact the real speed seen from inside the spacecraft of mass m, 

corresponding to the reduction of the time t at the level of the moving spacecraft moving at a 

speed v. 

The theoretical speed is equal to  𝒗 . 𝜸𝟐 

The measured speed v of the spacecraft of mass m relative to our Earth cannot exceed 

the speed of light, c.  

On the other hand, the theoretical speed may exceed c. 

In this case, when the measured speed is equal to v, the theoretical speed is equal to 

𝒗 . 𝜸𝟐 
And so, when there is an external gravity MG to the moving mass m, I have introduced a 

new coefficient  𝜸 . This coefficient  𝜸  would be the following coefficient 𝜸𝟐 : 

 

𝜸𝟐 =
𝟏

√(𝟏 −  
𝒗𝟐

(𝒄.𝜸𝟏
𝟐)𝟐

)

   

 

with       𝜸𝟏 =
𝟏

√(𝟏 −  
𝒗𝟐

𝒄𝟐
)

 

 

We can notice that when v tends toward c,  𝜸𝟏  tends to infinity, and therefore t tends to 

0. And also  𝜸𝟐  will tend to 1, since  𝜸𝟏  will tend to infinity. And in this case, when there is 

an external gravity MG to the moving mass m, since 𝜸𝟐  will tend towards 1 when v tends 

towards c, it is no longer the coefficient  𝜸𝟐  which makes it possible to freeze the time t into 

the spacecraft of mass m, but this is the effect of the external gravity MG. 

𝜸𝟏  becomes  𝜸𝟐 when there is an external gravity MG to m. 

On the other hand, there is a need to have a high speed to be close to t = 0, when you also 

want to be into the "space-time" where the time t is negative. 

Indeed, if the spacecraft of mass m has a speed v close to v4  the time t modified by my 

equation would be close to - t and the time would not be frozen as it is when t tends towards 0. 

It is necessary to be close to v0 for this, when there is an external gravity MG. 

And by staying at  v < v0, we would stay at a negative time t! 

If MG is very high, v0 would be close to c. 

But, if we are far from the center of gravity of MG, the corrected MG value would be low 

so v0 will be reduced and if we stay at  v < v0, but very close to v0 the time t will tend towards 

0 and therefore we will also freeze the time t inside the spacecraft. 

In summary, when a mass m is moving at a negative time t, in the presence of gravity MG 

external to the moving mass m (m being a spacecraft for example), to freeze the time t inside 

the spacecraft (and thus for having t close to 0, by negative value), the spacecraft will have to 

adjust its speed v to the speed v0  which depends on the distance d between m and the center 

of gravity of the external gravity MG (a “black-hole” for example). 

My Theory explains that it is the passage of the mass m (a spacecraft for example) to a 

negative time t, during a part of the travel, that would allow people to be able to make a far-

away travel into Space, at high speed, and to be able to find unaged people on our Earth when 

they return, such as people who have traveled into the spacecraft. 
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This is not possible with current physics: the people who remained on Earth would have 

aged much more than those who traveled into the spacecraft moving at high speed (close to c). 

My theory could explain also some other points concerning physics such as the following 

points: these points are not the main objective of this document where I want to present my 

Theory but I just want to summarize the ideas because I think it is interesting! 

The first point is linked to the reconciliation of the General Relativity and the Theory of 

Quantum Mechanics: Refs. [18] [19]. 

The main characteristic of the General Relativity Theory is often described by the 

following sentence: "gravitation is a deformation of space-time". 

The main characteristic of the Theory of Quantum Mechanics is often described by the 

following sentence: "It is impossible to know simultaneously the speed and the position of a 

quantum particle". For the characteristic of the Theory of General Relativity, I retain the 2 

words: gravity (coming from the term gravitation) and time (coming from the term "space-

time"). For the characteristic of the Theory of Quantum Mechanics, I retain the 2 words: speed 

and position. The position is linked to a distance and the speed is a distance traveled during a 

given time. And so, position and speed are linked by the time. The common point of the 2 

theories thus seems to be the time t, which is a parameter which is found in the two 

characterizations of the 2 theories. My Theory can explain how the time parameter t could bring 

together the 2 following theories which are the General Relativity and Quantum Mechanics. 

The Theory of General Relativity is interested in the infinitely large and is opposed to the 

Theory of Quantum Mechanics which is interested in the infinitely small. But, at the origin of 

the universe the 2 notions of infinitely small and infinitely large come together and the 2 

theories must therefore come together. The complement that I propose in order to modify the 

theory of General Relativity concerns the time t, at the level of the mass m in motion. 

The main modification, for the theory of Quantum Mechanics, concerns in fact the 

replacement of the time parameter, t, by the same equation that I have proposed for the theory 

of General Relativity: 

 

𝒕 → 𝒕. (
𝟏

𝜸𝟐
) . (𝟏 −

𝑴𝑮
𝟐

(𝒎.𝜸)𝟐
) . (𝟏 −

𝑹𝒔𝟐

𝒅𝟐
)   

 

The second point is linked to dark Matter and dark Energy: Refs. [20] [21]. 

For the first point my Theory could explain how the time seems to be the link to bring 

together the two theories of theoretical physics which are the theory of General Relativity and 

the theory of Quantum Mechanics. Physicists today believe that in order to achieve a complete 

unification of the two theories we must understand and explain in a scientific way what the 

concepts of dark Matter and dark Energy are: points 1 and 2 are linked in fact: 

Refs. [22] [23].  

These two concepts (dark Matter and dark Energy) are used today, by current physicists, 

to explain why the Universe is expanding and why this expansion is accelerating:  

Refs. [24] [25] [26] [27] [28] [29] [30] [31] [32]. My Theory could explain what could be dark 

Matter and dark Energy: this is also linked to the possibility for Matter to go into a “space-time” 

where the time t is negative, the same point that allow me to explain the reconciliation of the 

General Relativity and the Theory of Quantum Mechanics. And to be able to go to a negative 

time t, I have defined the new value of the time t at the level of the moving mass m (a spacecraft 

for example): see the equation above. 

https://www.scirp.org/journal/paperinformation.aspx?paperid=67534
https://www.scirp.org/journal/paperinformation.aspx?paperid=65064
https://www.scirp.org/journal/paperinformation.aspx?paperid=94990
https://www.scirp.org/journal/paperinformation.aspx?paperid=88522
https://www.scirp.org/journal/paperinformation.aspx?paperid=101247
https://www.scirp.org/journal/paperinformation.aspx?paperid=94321
https://www.scirp.org/journal/paperinformation.aspx?paperid=93869
https://www.scirp.org/journal/paperinformation.aspx?paperid=81830
https://www.scirp.org/journal/paperinformation.aspx?paperid=74921
https://www.scirp.org/journal/paperinformation.aspx?paperid=74434
https://www.scirp.org/journal/paperinformation.aspx?paperid=74430
https://www.scirp.org/journal/paperinformation.aspx?paperid=74399
https://www.scirp.org/journal/paperinformation.aspx?paperid=73362
https://www.scirp.org/journal/paperinformation.aspx?paperid=71890
https://www.scirp.org/journal/paperinformation.aspx?paperid=54201
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These modifications on the parameter t allowed me to successfully quantify the effect of 

gravity in the sense that I can calculate the effect of external gravity on the internal time t of a 

moving object (like a spacecraft for example). I found a relationship between t, v, m and MG. 

I thus specified the influence of an external gravity to a moving mass m, represented by 

its mass MG, on the relativistic parameters like time, mass, distances, the total energy of a 

moving mass m, …: Refs. [33] [34] [35] [36].  

I have also quantified the fact that the effect of the gravity MG is local and I thus defined 

the maximum distance where gravity has no more effect and I have also defined an equation to 

quantify the relationship between gravity and the distance d between the masses m and MG. 

 

 

3.  CONCLUSIONS 

  

I have succeeded in proving that the time t can become negative and I have defined the 

conditions in the universe to make this possible, in particular the conditions on the speed of the 

moving mass m (a spacecraft for example) and on the presence of an external gravity to the 

moving mass m, which is represented by its mass MG. 

I have also succeeded in quantifying the local effect of the external gravity to the moving 

mass m represented by the mass MG. 

This possibility of being able to change the "space-time" for a moving mass m, under 

certain conditions, makes it possible to bring together the 2 theories which are the theory of 

General Relativity and the theory of Quantum Mechanics and could also explain what could be 

dark Matter and dark Energy. And mainly, my Theory explains that it is the passage of the mass 

m (a spacecraft for example) to a negative time t, during a part of the travel, that would allow 

people to be able to make a far-away travel into Space, at high speed, and to be able to find 

unaged people on our Earth when they return, such as people who have traveled into the 

spacecraft. And this fantastic travel could be theoretically feasible, thanks to my Theory. 
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