Journal

Article title

Authors

Content

Title variants

Languages of publication

Abstracts

Discipline

Publisher

Journal

Year

Volume

Issue

Pages

169-180

Physical description

Contributors

author

- Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM. 21, Jatinangor, Sumedang, West Java 45363, Indonesia

author

author

References

- [1] Robinson A.D, The use of control systems analysis in neutrophsiology of eye movements. Annual Rev. Neurosci 4 (1981) 462-503
- [2] R.L. Bagley, P.J. Torvik, Fractional calculus in the transient analysis of viscoelasticity damped structures. AIAA Journal 23 (1985) 918-925
- [3] R.L. Bagley, P.J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol 27 (1983) 201-210
- [4] R.L. Bagley, P.J. Torvik, Fractional calculus a differential approach to the analysis of viscoelasticity damped structures. AIAA Journal 21(5) (1983) 741-748
- [5] R.L. Magin, Fractional calculus in Bioengineering. Crit. Rev. Bimed. Eng. 32 (2004) 1-104
- [6] D. Tripathi. Numerical study on creeping flow of Burgers’ fluids through a peristaltic tube. Journal Fluids Eng. 133 (2011) 104-121
- [7] D. Tripathi. Peristaltic transport of fractional Maxwell fluids in uniform tubes: applications in endoscopy. Comput. Math. Appl. 62(3) (2011) 1116-1126
- [8] D. Tripathi, Anwar Beg. Mathematica numerical simulation of peristaltic biophysical transport of a fractional viscoelastic fluid through an inclined cylindrical tube. Comput. Methods Biomech. Biomed. Eng. 18(15) (2015) 1648-1657
- [9] D. Tripathi, O.A. Beg, P.K. Gupta, G.Radhakrishnamacharya, J. Mazumdar, DTM simulation of peristaltic viscoelastic biofluid flow in asymmetric porous media: a digestive transport model. J. Bionic Eng. 12(4) (2015) 643-655
- [10] O. A. Arqub, Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. J. Numer. Methods Heat Fluid Flow Int. 28(4) (2017) 828-856
- [11] K. Diethelm, N.J. Ford, A. Freed. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29 (2002) 3-22
- [12] K. Diethelm, N.J. Ford, A. Freed, Detailed error analysis for fractional Adams method. Numer. Algorithms 36 (2004) 31-52
- [13] P. Kumar, O.P. Agrawal, An approximate method for numerical solution of fractional differential equations. Signal Process. 86 (2006) 2602-2610
- [14] Z. Odibat, Approximations of fractional integrals and Caputo fractional derivatives. Appl. Math. Comput. 178 (2006) 527-533
- [15] O. P Agrawal, A general finite element formulation for fractional variational problems. J. Math. Anal. Appl. 337 (2008) 1-12
- [16] T. Blaszczyk and J. Siedlecki. An approximation of the fractional integrals using quadratic interpolation. J. Appl. Math. Comput. Mech. 13(4) (2014) 13-18
- [17] Kamlesh Kumar. Approximations of fractional integrals and Caputo derivatives with application in solving Abel’s integral equations. Journal of King Saud University 31(4) (2019) 692-700
- [18] Diethelm, An algorithm for the numerical solution of differential equations of fractional order, Electron. Trans. Numer. 5 (1997) 1-6
- [19] Diethelm, Generalized compound quadrature formulae for finite-part integrals. IMA J. Numer. Anal. (17) (1997) 479-493
- [20] C. Lubich. Discretized Fractional Calculus. SIAM J. Math. Anal. 17(3) (1986) 704-719

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-c0ce8c99-b399-49b6-af47-70136a26afeb