Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2022 | 40 | 13-25

Article title

A study on the toxicity of aluminum in rice, Oryza sativa L.

Content

Title variants

Languages of publication

EN

Abstracts

EN
Aluminum trivalent (Al3+), which commonly occurs on 40% of arable land, is highly phytotoxic to crop growth and yield in acidic soils. As one of the major pollutants in the atmosphere, this element reduces chlorophyll activity, CO2 assimilation, and photosynthesis. Rice is a staple food crop in India and Asian countries. A widely recognized metal toxicity of rice (Oryza sativa) includes soluble aluminum. The processes of senescence are known to be characterized by loss of chlorophyll, lipids, total protein, photosynthetic activity, and RNA. The author illustrates the aluminum effect in rice plants (ADT 43 & PA 6129) under different aluminum exposure levels (100 µM, 200 µM, & 300 µM), in regard to photosynthetic activity (total chlorophyll degradation, depleted CO2 fixation, inhibited stomatal conductance) bioaccumulation, and histological analysis during leaf senescence. Rice varieties PA 6129 and ADT 43 were compared to assess photosynthetic degradation, bioaccumulation, and histological changes associated with aluminum-mediated degradation. Consequently, accelerated leaf senescence was observed after prolonged exposure to variety PA 6129 with increasing aluminum concentration. As an alternative, there is ADT 43, a precision aluminum tolerance mechanism.

Keywords

Year

Volume

40

Pages

13-25

Physical description

Contributors

  • Department of Chemistry, Puducherry Technological University, Puducherry - 605014, India

References

  • [1] Matsumoto, H., & Motoda, H. (2012). Aluminum toxicity recovery processes in root apices. Possible association with oxidative stress. Plant Science, 185, 1-8
  • [2] Von Uexküll, H. R., & Mutert, E. (1995). Global extent, development and economic impact of acid soils. Plant and Soil, 171(1), 1-15
  • [3] Department of Agriculture Govt. Tamil Nadu Agricultural University, (2012). Crop production guide, 2012, 3-373
  • [4] Rani, N.S., Prasad, G.S.V., Sailaja, B., Muthuraman, P., Meera, S.N. and Viraktamath, B.C. 2010. Rice Almanac India. Pp.307. Directorate of Rice Research, Hyderabad.
  • [5] Chen, L. S., Qi, Y. P., Smith, B. R., & Liu, X. H. (2005). Aluminum-induced decrease in CO2 assimilation in citrus seedlings is unaccompanied by decreased activities of key enzymes involved in CO2 assimilation. Tree Physiology, 25(3), 317-324
  • [6] Jiang, H. X., Chen, L. S., Zheng, J. G., Han, S., Tang, N., & Smith, B. R. (2008). Aluminum-induced effects on Photosystem II photochemistry in Citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiology, 28(12), 1863-1871
  • [7] Jiang, H. X., Tang, N., Zheng, J. G., Li, Y., & Chen, L. S. (2009a). Phosphorus alleviates aluminum-induced inhibition of growth and photosynthesis in Citrus grandis seedlings. Physiologia Plantarum, 137(3), 298-311
  • [8] Jiang, H. X., Tang, N., Zheng, J. G., & Chen, L. S. (2009b). Antagonistic actions of boron against inhibitory effects of aluminum toxicity on growth, CO2 assimilation, ribulose-1, 5-bisphosphate carboxylase/oxygenase, and photosynthetic electron transport probed by the JIP-test, of Citrus grandis seedlings. BMC Plant Biology, 9(1), 102
  • [9] Pereira, W. E., de Siqueira, D. L., Martínez, C. A., & Puiatti, M. (2000). Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminum stress. Journal of Plant Physiology, 157(5), 513-520
  • [10] Fletcher, R. A. (1969). Retardation of leaf senescence by benzyladenine in intact bean plants. Planta, 89(1), 1-8
  • [11] Goldney, D. C., & Van Steveninck, R. F. M. (1972). Ethylene production and biochemical changes in detached leaves of Nymphoides indica. In Plant Growth Substances 1970 (pp. 604-610). Springer Berlin Heidelberg.
  • [12] Back, A., & Richmond, A. E. (1971). Interrelations between gibberellic acid, cytokinins and abscisic acid in retarding leaf senescence. Physiologia Plantarum, 24(1), 76-79
  • [13] Thomas H. Enzymes of nitrogen mobilization in detached leaves of Lolium temulentum during senescence. Planta 1978; 142: 161-169
  • [14] Wingler, A., von Schaewen, A., Leegood, R. C., Lea, P. J., & Quick, W. P. (1998). Regulation of leaf senescence by cytokinin, sugars, and light effects on NADH-dependent hydroxypyruvate reductase. Plant Physiology, 116(1), 329-335
  • [15] Thimann, K.V. (1980). The senescence of leaves. In: Senescence in Plants. CRC Press Inc., Boca Raton, Florida, 85-115
  • [16] Posthumus, A. C. (1983). Higher plants as indicators and accumulators of gaseous air pollution. In Ecological indicators for the assessment of the quality of air, water, soil, and ecosystems (pp. 263-272). Springer Netherlands.
  • [17] Vance W, Pradeep K, Strachan SR, Diffey S, Bell RW. Novel sources of tolerance to aluminium toxicity in wild cicer (Cicer reticulatum and Cicer echinospermum) collections. Frontiers in Plant Science 12 (2021) 1202. https://doi.org/10.3389/fpls.2021.678211
  • [18] Vitorello, V. A., Capaldi, F. R., & Stefanuto, V. A. (2005). Recent advances in aluminum toxicity and resistance in higher plants. Brazilian Journal of Plant Physiology, 17(1), 129-143
  • [19] Kováčik, J., Klejdus, B., & Hedbavny, J. (2010). Effect of aluminium uptake on physiology, phenols and amino acids in Matricaria chamomilla plants. Journal of Hazardous Materials, 178(1-3), 949-955
  • [20] Muthukumaran, M., & Rao, A. V. B. (2013). Starch Metabolism During Leaf Senescence in Two Rice Varieties on Exposure to Aluminum. Nature Environment and Pollution Technology, 12 (4), 703-708
  • [21] Muthukumaran, M., & Rao, A. V. B. (2014). Toxic Effects of Aluminum on Certain Protein Metabolic Parameters in Two Rice Varieties during Leaf Senescence. Research Jouranal of Pharmaceutical, Biological and Chemical Sciences, 5(1), 598
  • [22] Arnon, D. I., Allen, M. B., & Whatley, F. R. (1954). Photosynthesis by isolated chloroplasts. Nature, 174(4426), 394-396
  • [23] Vadell, J., Medrano, H. (1992). Effect of drought on subterranean clover. 2. Genetic variability of photosynthesis, transpiration and stomatal conductance. Photosynthetica, 27: 433–440
  • [24] Gorsky, J. E., & Dietz, A. A. (1978). Determination of aluminum in biological samples by atomic absorption spectrophotometry with a graphite furnace. Clinical Chemistry, 24(9), 1485-1490
  • [25] Easu, K. Anantomy of seeds Plants. John Wiley and sons. New York. (1979) pp. 550.
  • [26] O'brien, T. P., Feder, N., & McCully, M. E. (1964). Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma, 59(2), 368-373
  • [27] Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11(1), 1-42
  • [28] Molisch, H. (1938) Die Lebonsdauer der pflanzen, Eng. Transl. Fulling, H. The longevity of plants, Science Press, Lancaster.
  • [29] Leopold, A. C., Niedergang-Kamien, E., & Janick, J. (1959). Experimental Modification of Plant Senescence. Plant Physiology, 34(5), 570-573
  • [30] Whyte, P., & Luckwill, L. C. (1966). A sensitive bioassay for gibberellins based on retardation of leaf senescence in Rumex obtusifolius (L.). Nature, 210, 1360
  • [31] Goldthwaite, J. J., & Laetsch, W. M. (1967). Regulation of senescence in bean leaf discs by light and chemical growth regulators. Plant Physiology, 42(12), 1757-1762
  • [32] Goldney, D. C., & Van Steveninck, R. F. M. (1972). Ethylene production and biochemical changes in detached leaves of Nymphoides indica. In Plant Growth Substances 1970 (pp. 604-610). Springer Berlin Heidelberg.
  • [33] Singh, B. N., & Lal, K. N. (1935). Investigation of the effect of age on assimilation of leaves. Annals of Botany, 2, 291-307
  • [34] Freeland, R. O. (1952). Effect of age of leaves upon the rate of photosynthesis in some conifers. Plant Physiology, 27(4), 685-690
  • [35] Richardson, S. D. (1957). The effect of leaf age on the rate of photosynthesis in detached leaves of tree seedlings. Acta Botanica Neerlandica, 6(4), 445-457
  • [36] Smillie, R. M., & Krotkov, G. (1961). Changes in the dry weight, protein, nucleic acid, and chlorophyll contents of growing pea leaves. Canadian Journal of Botany, 39(4), 891-900
  • [37] Smillie, R.M. (1962) Photosynthetic and respiratory activities of growing pea leaves, Plant Physiol. 37: 716-721
  • [38] Woolhouse, H. W. (1967). The nature of senescence in plants. In Symposium. Soc. Exp. Biol Vol. 21, pp. 179-213
  • [39] Abdel-Basset, R., Issa, A. A., & Adam, M. S. (1995). Chlorophyllase activity: effects of heavy metals and calcium. Photosynthetica, 31(3), 421-425
  • [40] Pereira, W. E., de Siqueira, D. L., Martínez, C. A., & Puiatti, M. (2000). Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminum stress. Journal of Plant Physiology, 157(5), 513-520
  • [41] Chen, L. S., Qi, Y. P., & Liu, X. H. (2005b). Effects of aluminum on light energy utilization and photoprotective systems in citrus leaves. Annals of Botany, 96(1), 35-41
  • [42] Ohki, K. (1986). Photosynthesis, chlorophyll, and transpiration responses in aluminum stressed wheat and sorghum. Crop Science, 26(3), 572-575.
  • [43] Ridolfi, M., & Garrec, J. P. (2000). Consequences of an excess Al and a deficiency in Ca and Mg for stomatal functioning and net carbon assimilation of beech leaves. Annals of Forest Science, 57(3), 209-218
  • [44] Lidon, F. C., Barreiro, M. G., Ramalho, J. C., & Lauriano, J. A. (1999). Effects of aluminum toxicity on nutrient accumulation in maize shoots: implications on photosynthesis. Journal of Plant Nutrition, 22(2), 397-416
  • [45] Simon, L., Kieger, M., Sung, S. S., & Smalley, T. J. (1994). Aluminum toxicity in tomato. Part 2. Leaf gas exchange, chlorophyll content, and invertase activity. Journal of Plant Nutrition, 17(2-3), 307-317
  • [46] Peixoto, H. P., Da Matta, F. M., & Da Matta, J. C. (2002). Responses of the photosynthetic apparatus to aluminum stress in two sorghum cultivars. Journal of Plant Nutrition, 25(4), 821-832
  • [47] Ribeiro, M. A. Q., Almeida, A. A. F. D., Mielke, M. S., Gomes, F. P., Pires, M. V., & Baligar, V. C. (2013). Aluminum effects on growth, photosynthesis, and mineral nutrition of cacao genotypes. Journal of Plant Nutrition, 36(8), 1161-1179
  • [48] Tolrà, R., Vogel-Mikuš, K., Hajiboland, R., Kump, P., Pongrac, P., Kaulich, B., ... & Poschenrieder, C. (2011). Localization of aluminum in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy. Journal of Plant Research, 124(1), 165-172
  • [49] Hue, N. V., Craddock, G. R., & Adams, F. (1986). Effect of organic acids on aluminum toxicity in subsoils. Soil Science Society of America Journal, 50(1), 28-34
  • [50] Delhaize, E., Ryan, P. R., & Randall, P. J. (1993). Aluminum tolerance in wheat (Triticum aestivum L.)(II. Aluminum-stimulated excretion of malic acid from root apices). Plant Physiology, 103(3), 695-702
  • [51] Ma, J. F., Zheng, S. J., & Matsumoto, H. (1997a). Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant and Cell Physiology, 38(9), 1019-1025
  • [52] Ma, J. F., Zheng, S. J., Matsumoto, H., & Hiradate, S. (1997b). Detoxifying aluminum with buckwheat. Nature, 390 (6660), 569-570
  • [53] Macfarlane, G. R., & Burchett, M. D. (2001). Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Marine Pollution Bulletin, 42(3), 233-240
  • [54] Hue, N. V., Craddock, G. R., & Adams, F. (1986). Effect of organic acids on aluminum toxicity in subsoils. Soil Science Society of America Journal, 50(1), 28-34
  • [55] Zelalem Zewdu, Rice Blast Biology and Reaction of Host to the Disease. World News of Natural Sciences 39 (2021) 11-21
  • [56] Nnagbo, P. A., C. O. Anyamene, I. V. Anyiam, Epidemiological status of dermatophytosis among rice farmers in Ebonyi State, Nigeria. World Scientific News 155 (2021) 65-79
  • [57] Daniel Omeodisemi Omokpariola, Joy Njoku Otuosorochi, Adsorption of Congo Red Dye Using Rice Husk. World Scientific News 150 (2020) 22-38
  • [58] Taddesse Lakew, Abebaw Dessie, Desta Abebe, Validating introduced commercial rice varieties for registration based on their adaptability and farmers’ feedback at Fogera and Pawe, Northwest Ethiopia. World Scientific News 160 (2021) 190-202

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-c054fbc7-5749-443d-bf26-4bbaaa449633
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.