Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2024 | 52 | 34-57

Article title

Implication of particle sizes on bioremediation of crude oil polluted sandy soil in Okolomade part of Niger Delta Basin, southern Nigeria

Content

Title variants

Languages of publication

EN

Abstracts

EN
Bioremediation is a cost-effective and environmentally friendly technology that exploits the capabilities of microorganisms to degrade organic pollutants leading to complete mineralization. It has become the most preferred technique for oil spill remediation on soil in Nigeria. The study aims to examine the implication of particle sizes on bioremediation of crude oil polluted sandy soil in Okolomade part of Niger Delta Basin, southern Nigeria. Once a week samples were collected for a total of 28 days and were analyzed for chemical and microbial content in an aerobic setting. The classification of the soil samples was done according to the U.S. Bureau of soil classification system, the soil samples were divided into X and Y, where X represented fine to coarse sand and Y represented very fine to coarse sand. The particle size distribution, total hydrocarbon content (THC), total heterotrophic bacteria count (THBC), total organic carbon, soil pH, and available nitrogen and phosphorus were the parameters investigated throughout the 28-day examination of the soil samples. The results shows that the total heterotrophic bacterial count and soil pH increased in all of the soil samples, with samples A for fine to coarse sand (X) and sample E for very fine to coarse sand showing the most significant increase with values of 120 Cfu × 105/g and 266 Cfu × 105/g, respectively. These samples also had the lowest coefficients of uniformity (Cu). The results further reveal that the total hydrocarbons content, available nitrogen and phosphorus, as well as total organic carbon, all decreased noticeably. In contrast to samples with higher coefficient of uniformity values, samples with lower coefficients of uniformity showed a higher decrease in hydrocarbon content, suggesting that particle size distribution affects bioremediation. 0.0899 and 0.0942 were calculated to be the correlation coefficient of total hydrocarbon content vs coefficient of uniformity for fine to coarse sand (X) and very fine to coarse sand (Y). The contaminated soil samples are treated by combining pig manure, NPK 15:15:15, and the microorganism Pseudomonas aeruginosa, the total hydrocarbon content of sandy soil was reduced.

Discipline

Year

Volume

52

Pages

34-57

Physical description

Contributors

author
  • Department of Geology, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Department of Physics, University of Calabar, Cross River State, Nigeria
  • Department of Geology, Federal University Lokoja, Kogi State, Nigeria
  • Department of Physics, University of Calabar, Cross River State, Nigeria

References

  • [1] Abioye, P. O., Aziz, A. A. & Agamuthu, P. (2010). Enhanced biodegradation of used engine oil in soil amended with organic wastes. Water, Air, & Soil Pollution, 209, 173-179. https://doi.org/10.1007/s11270-009-0189-3
  • [2] Adaba, C. S. (2013). Effects of particle size distribute on bioremediation of crude oil polluted sandy soils. Nigerian Journal of Technology 32(3), 435-439
  • [3] Adagunodo, T. A., Bayowa, O. G., Alatise, O. E, Oshonaiye, A. O., Adewoyin, O. O. & Opadele, V. O. (2021). Characterization of reservoirs and depositional study of J-P Field, shallow offshore of Niger Delta Basin, Nigeria. Scientific African 15, e01064
  • [4] Adams, G. O., Fufeyin, P. T., Okoro, S. E. & Ehinomen, I. (2015). Bioremediation, biostimulation and bioaugmention: a review. Int J Environ Bioremediation Biodegradation 3: 28–39
  • [5] Adetutu, E. M. (2015). Exploiting the intrinsic hydrocarbon-degrading microbial capacities in oil tank bottom sludge and waste soil for sludge bioremediation. Int J Environ Sci Technol 12: 1427–1436
  • [6] Agamuthu, P., Tan, Y. S., & Fauziah, S. H. (2013). Bioremediation of hydrocarbon soil using selected organic wastes. Procedia Environmental Sciences, 18, 694-702
  • [7] Alao. P. A., Olabode, S.O., Opeloye. S. A. (2013). Integration of seismic and petrophysic to characterize reservoirs in “ALA” oil field, Niger Delta. Sci. World J. 101–15. https://doi.org/10.1155/2013/421720
  • [8] Ali, N., Dashti, N., Khanafer, M., Al-Awadhi, H. & Radwan, S. (2020). Bioremediation of 731 soils saturated with spilled crude oil. Sci. Rep. 10. https://doi.org/10.1038/S41598- 732 019-57224-X
  • [9] Álvarez, L. M., Ruberto, L. A. M., Balbo, A. L. & Mac Cormack, W. P. (2017). Bioremediation of hydrocarbon-contaminated soils in cold regions: development of a pre- optimized biostimulation biopile-scale field assay in Antarctica. Sci Total Environ 590: 194–203
  • [10] Al-Zaban, Mayasar I., Mohamed A. Mahmoud, Maha A. AlHarbi, and Aisha M. Bahatheq. 2020. Bioremediation of Crude Oil by Rhizosphere Fungal Isolates in the Presence of Silver Nanoparticles. International Journal of Environmental Research and Public Health 17, no. 18: 6564. https://doi.org/10.3390/ijerph17186564
  • [11] Arinze, E. E., Ekwueme, B. N. & Ekeleme, A. E. (2022). The Effect of Soil Particle Sizes on Bioremediation Efficiency of Petroleum Contaminated Soils, Soil and Sediment Contamination: An International Journal, 32: 3, 274-286, DOI: 10.1080/15320383.2022.2079609
  • [12] Atlas, R. M. (1995). Bioremediation of Petroleum Pollutants. International Biodeterioration and Biodegradation. Vol. 32. Pp. 317-327
  • [13] Atlas, R.M. & Hazen, T. C. (2011). Oil biodegradation and bioremediation: A tale of the two worst spills in U.S. history. Environ. Sci. Technol. 45, 6709–6715
  • [14] Balachandran, C., Duraipandiyan, V., Balakrishna, K. & Ignacimuthu, S. (2012). Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1 isolated from oil contaminated soil). Bioresour. Technol. 112, 83–90
  • [15] Burke, K. (1972). Longshore drift, submarine canyons, and submarine fans in development of Niger Delta. Am Assoc Pet Geol 56: 1975–1983
  • [16] Brki´ c, D. & Praks, P. (2021). Probability analysis and prevention of offshore oil and gas accidents: Fire as a cause and a consequence. Fire, 4, 71
  • [17] Cai, B., Ma, J., Yan, G., Dai, X., Li, M. & Guo, S. (2016). Comparison of phytoremediation, bioaugmentation and natural attenuation for remediating saline soil contaminated by heavy crude oil. Biochem Eng J 112: 170–177
  • [18] Cai, P., Ning, Z., Liu, Y. et al. Diagnosing bioremediation of crude oil-contaminated soil and related geochemical processes at the field scale through microbial community and functional genes. Ann Microbiol 70, 36 (2020). https://doi.org/10.1186/s13213-020-01580-x
  • [19] Cerqueira, V.S., Peralb, M.C.R., Camargo, F. A. O. & Bento, F. M. (2014). Comparison of the bioremediation strategies for soil impacted with petrochemical oily sludge, Int. Biodeterior. Biodegrad. 95, 338–345
  • [20] Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D. & Zhang, J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv 33: 745–755
  • [21] Chen, W., Kong, Y. Li, J., Sun, Y., Min, J. & Hu, X. (2020) Enhanced biodegradation of crude oil by constructed bacterial consortium comprising salt-tolerant petroleum degraders and biosurfactant producers. Int. Biodeterior. Biodegrad 154, 105047
  • [22] Chimezie Dirisu N. G. (2015). Isolation and characterization of hydrocarbon utilizing fungi from fresh water swampy soil. Microbiol Res Int 3(2): 33–36
  • [23] Cratchley C. R. and G. P. Jones, An Interpretation of the Geology and Gravity Anomalies of the Benue Valley, Nigeria, Overseas Geological Surveys Geophysical Paper, Vol. 1, H.M. Stationery Office, Norwich, 1965, pp. 1-26.
  • [24] Das N, Das A, Das S, Bhatawadekar V, Pandey P, Choure K, Damare S, Pandey P. Petroleum Hydrocarbon Catabolic Pathways as Targets for Metabolic Engineering Strategies for Enhanced Bioremediation of Crude-Oil-Contaminated Environments. Fermentation. 2023; 9(2): 196. https://doi.org/10.3390/fermentation9020196
  • [25] Dombrowski, N., Donaho, J. A., Gutierrez, T., Seitz, K. W., Teske, A. P. & Baker, B.J. (2016). Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nat Microbiol 1: 16057. https://doi.org/10.1038/nmicrobiol.2016.57
  • [26] Doust, H. & Omatsola, E. (1990). Niger Delta. In: Edwards JD, Santogrossi PA (eds) Divergent/passive margin basins, vol 48. AAPG Memoir, Tulsa, pp 239–248
  • [27] Dvořák, P., Nikel, P. I., Damborský, J. & de Lorenzo V. (2017). Bioremediation 3.0: engineering pollutantremoving bacteria in the times of systemic biology. Biotechnol Adv 35:845–866. https://doi.org/10.1016/j.biotechadv.2017.08.001
  • [28] Ebong, E. D., Akpan, A. E., Emeka, C. N., & Urang, J. G. (2017). Groundwater quality assessment using geoelectrical and geochemical approaches: case study of Abi Area, southeastern Nigeria. J Appl Water Sci 7(5): 2463–2478
  • [29] Ebong D. E., Akpan, A. E. & Ekwok, S. E. (2019). Stochastic modelling of spatial variability of petrophysical properties in parts of the Niger Delta Basin, southern Nigeria. Journal of Petroleum Exploration and Production Technology 10: 56958. https://doi.org/10.1007/s13202-019-00787-2
  • [30] El Mahdi, A. M., & Aziz, H. A. (2019). Hydrocarbon biodegradation using agro-industrial wastes as co-substrate. In J. N. Bhakta (Ed.), Handbook of research on inventive bioremediation techniques (pp. 155-185). Hershey, PA, USA: IGI Global.
  • [31] Emoyan, O. O., Akporido S. O. & Agbaire P. O. (2018). Effects of soil pH, Total Organic Carbon and texture on fate of Polycyclic Aromatic Hydrocarbons (PAHs) in Soils. Global NEST Journal, 20(2), 181-187
  • [32] Erifeta, O. G., Eriyamremu, E.G., Omage, K. & Njoya, K. H. (2017). Alterations in the bio-membrane of libyodrilus violaceus following exposure to crude oil and its fractions, International Journal of Biochemistry Research & Review, 20(1), 1–11. https://doi.org/10.9734/IJBCRR/2017/37256
  • [33] Eyankware, M.O., Akakuru, O.C., Ulakpa, R.O.E. et al. Sustainable management and characterization of groundwater resource in coastal aquifer of Niger delta basin Nigeria. Sustain. Water Resour. Manag. 7, 58, (2021). https://doi.org/10.1007/s40899-021-00537-5
  • [34] Falebita, D. E., Ayeni, O. Z., Bayowa, O. G., & Anukwu, G. C. (2015). A study of the organic richness and petrophysical characteristics of selected shales from the analysis of wireline logs: a case of “Neya” field, Niger Delta, IFE J. Sci. 17 (1), 41–52
  • [35] Farhadian, M., Vachelard, C., Duchez, D. & Larroche, C. (2008). In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresour Technol 99: 5296–5308
  • [36] Gomez, F. & Sartaj, M. (2013). Field scale ex-situ bioremediation of petroleum contaminated soil under cold climate conditions. Int Biodeterior Biodegradation 85: 375–382
  • [37] Gomez, F. & Sartaj, M. (2014). Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). Int Biodeterior Biodegradation 89: 103–109
  • [38] Hafez T., Maren Ortiz-Zarragoitia, Christine Cagnon, Cristiana Cravo-Laureau, Robert Duran, Legacy and dispersant influence microbial community dynamics in cold seawater contaminated by crude oil water accommodated fractions, Environmental Research, Volume 212, Part D, 2022, 113467, https://doi.org/10.1016/j.envres.2022.113467
  • [39] Han, H. L., Chen, Z., Yang, J. M., Miao, C. C., Zhang, K., Jin, W. B. & Liu, Z .(2008). Field scale demonstration of fungi-bacteria augmented remediation of petroleum contaminated soil. Huanjing Kexue 29: 454–461
  • [40] Hara, E., Kurihara, M., Nomura, N., Nakajima, T., & Uchiyama, H. (2013). Bioremediation field trial of oil contaminated soil with food-waste compost. Journal of Japan Society of Civil Engineers, 1, 125-132.
  • [41] Hussain, K., Ali, F., Ragavan, N. A. & Manhas, P. S. (2015). Sustainable tourism and resident satisfaction at Jammu and Kashmir, India. Worldw. Hosp. Tour. Themes 7, 486–499
  • [42] Hazaimeh, M. D. & Ahmed, E. S. (2021). Bioremediation perspectives and progress in petroleum pollution in the marine environment: a review. Environ. Sci. Pollut. Res. Int. 28, 54238–54259. https://doi.org/10.1007/S11356-021-15598-4
  • [43] Jørgensen, K., Puustinen, J. & Suortti, A. M. (2000). Bioremediation of petroleum hydrocarbon contaminated soil by composting in biopiles. Environ Pollut 107: 245–254
  • [44] Kaplan, A., Lusser, C.U. and Norton, I.O. (1994) Tectonic Map of the World, Panel 10: Tulsa, Scale 1:10,000,000. American Association of Petroleum Geologists, Tulsa
  • [45] Kulke, H. (1995). Nigeria. In: Kulke H (ed) Regional petroleum geology of the world: part II. Africa, America, Australia and Antarctica. Gebrüder Borntraeger, Berlin, pp 143–172
  • [46] Lehner, P. & De Ruiter, P. A. C. (1977). Structural history of the Atlantic margin of Africa. AAPG Bulletin 61: 961–981
  • [47] Lu, L., Tyler, H., Song, J., Yi, Z., & Zhiyong Jason R. (2014). Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. Environ Sci Technol 48: 4021
  • [48] Mascle, J. (1976). Submarine Niger Delta: structural framework. J Min Geol 13(1): 12–28
  • [49] Meghara, M., Ramakrishnan, B., Ventateswarlu, K., Sethunathan, N. & Naidu, R. (2011). Bioremediation approaches for organic pollutants: A critical perspective. Int. J. Environ. 37 (8): 1362–75. doi:10.1016/j.envint.2011.06.003.
  • [50] Menendez-Vega, D., Gallego, J. L. R., Pelaez, A. I., Fernandez de Cordoba, G, Moreno, J. Muñoz, D. & Sanchez, J. (2007). Engineered in situ bioremediation of soil and groundwater polluted with weathered hydrocarbons. Eur J Soil Biol 43: 310–321. https://doi.org/10.1016/j.ejsobi.2007.03.005
  • [51] Mishra, S., Jyot, J., Kuhad, R. C. & Lal, B. (2001). Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67: 1675–1681
  • [52] Michel, J. & Fingas, M. (2016). Oil Spills: Causes, consequences, prevention, and counter measures. In: Fossil Fuels, Current Status and Future Directions. 159-201. https://doi.org/10.1142/9789814699983_0007
  • [53] Mrozik, A. & Piotrowska-Seget, Z. (2010). Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165: 363–375. https://doi.org/10.1016/j.micres.2009.08.001
  • [54] Nedwell, D. B. (1999). Effect of Low Temperature on Microbial Growth. FEMS 30, 101-111
  • [55] Naveed M, Bukhari SS, Mustafa A, Ditta A, Alamri S, El-Esawi MA, Rafique M, Ashraf S, Siddiqui MH. Mitigation of Nickel Toxicity and Growth Promotion in Sesame through the Application of a Bacterial Endophyte and Zeolite in Nickel Contaminated Soil. International Journal of Environmental Research and Public Health. 2020; 17(23): 8859. https://doi.org/10.3390/ijerph17238859
  • [56] Nwogu, T. P., Azubuike, C. C., & Ogugbue, C. J. (2015). Enhanced bioremediation of soil artificially contaminated with petroleum hydrocarbons after amendment with Capra aegagrus hircus (Goat) manure. Biotechnology Research International, volume 2015, Article ID 657349, 7 pages. http://dx.doi.org/10.1155/2015/657349
  • [57] Ojewumi, M. E., Anenih, E. V., Taiwo, O. S., Adekeye, B. T., Awolu, O. O. & Ojewumi, E. O. (2018). A bioremediation study of raw and treated crude petroleum oil polluted soil with Aspergillus niger and Pseudomonas aeruginosa. J Ecol Eng 19(2):226–235. https://doi.org/10.12911/22998993 83564.
  • [58] Okoh, E., Yelebe, Z. R., Oruabena, B., Nelson E. S. & INdiamaowei, O. P. (2020). Clean-up of crude oil-contaminated soils: bioremediation option. Int. J. Environ. Sci. Technol. 17, 1185–1198. https://doi.org/10.1007/s13762-019-02605-Y
  • [59] Omenna EC, Omage K, Ezaka E, Azeke MA. Tolerance, taxonomic and phylogenetic studies of some bacterial isolates involved in bioremediation of crude oil polluted soil in the southern region of Nigeria. Heliyon. 2023 Apr 20; 9(4): e15639. doi: 10.1016/j.heliyon.2023.e15639
  • [60] Onyeagocha, A. C. (1980). Petrography and depositional environment of the Benin Formation, Nigeria. Journal of Mining Geology 17: 147–151
  • [61] Peekate, L. P., Obediah, A. I. & Onunwo, M. (2023). Use of wastewater from legume cooking in Bioremediation of crude-oil polluted soil. Journal of Biology and Genetic Research. Vol. 9 No. 1. https://doi.org/10.56201/jbgr.v9.no1.2023.pg37.53
  • [62] Pizarro-Tobías P et al (2015) Field trial on removal of petroleum-hydrocarbon pollutants using a microbial consortium for bioremediation and rhizoremediation. Environ Microbiol Rep 7: 85–94. https://doi.org/10.1111/1758-2229.12174
  • [63] Prince, R. C. (2002). Petroleum and other hydrocarbons biodegradation, in: Encyclopedia of Environ Microbiol, pp. 66–74.
  • [64] Rafique, H. M., Khan, M. Y., Naeem Asghar, H., Zahir, Z. A., Sajid Nadeem, S. M., Sohaib, M., Alotaibi F. & Al-Barakah, N. I. (2023). Converging alfalfa (Medicago sativa L.) and petroleum hydrocarbon acclimated ACC-deaminase containing bacteria for phytoremediation of petroleum hydrocarbon contaminated soil, International Journal of Phytoremediation, 25: 6, 717-727, https://doi.org/10.1080/15226514.2022.2104214
  • [65] Reyment, A. (1965). Aspects of the geology of Nigeria. Ibadan University Press, Ibadan, Nigeria
  • [66] Safrilia, S. & Purwanti, I. P. (2023). Bioremediation of Kerosene Contaminated Soil with The Addition of Bacillus cereus Bacteria. Asian Journal of Engineering, Social and Health Vol. 2 No. 9.
  • [67] Singh, H., Bhardwaj, N., Arya, S. K. & Khatri, M. (2020). Environmental impacts of oil spills and their remediation by magnetic nanomaterials. Environ. Nanotechnol. Monit. Manag. 14, 100305
  • [68] Savira, S. & Ipung, F. P. (2023). Bioremediationof kerosene copmtaminatedsoil witheadditionof Bacillus cereus. Journal of Engineering, Social and Health Vol 2 (9)
  • [69] Stauble, A. J. & Short, K. C. (1967). Outline of geology of Niger Delta. Am Assoc Pet Geol Bull 51: 761–779
  • [70] Suryatmana, P., Zannatan, A. M., Sylvia, A. R., Setiawati, M. R., & Syafrizal, Z. (2018) The potential of the mushroom log waste (MLW) and Azotobacter vinelandii to improve hydrocarbon biodegradation for rehabilitation of petroleum contaminated soil. IOP Conf Ser: Earth Environ Sci 215: 012004. https://doi.org/10.1088/1755-1315/215/1/012004.
  • [71] Walter-Duru V. A. & Ekemube, R. A. (2023). Evaluating the Potentials of Costus afer Juice for Bioremediation of Crude Oil Contaminated Soil. International Journal of Academic and Applied Research Vol. 7 Issue 6, Pages: 58-66.
  • [72] Wanga, S., Xub, Y., Lin, Z., Zhang, J., Norbu, J., & Liu, W. (2017). The Harm of Petroleum Polluted Soil and its Remediation Research. AIP Conference Proceedings 1864, 020222 (2017); https://doi.org/10.1063/1.4993039 (Accessed on 20th January 2023).
  • [73] Weber, K. J. & Dankoru, E. M. (1976) .Petroleum geology of Niger Delta, Tokyo. In: 9th World Petroleum Congress Proceedings, London. Applied Publishers, Ltd., 2, 209–221
  • [74] Whiteman, A. J. (1982). Nigeria: its petroleum geology, resources andpotential.1 & 2. Graham and Trottan, London
  • [75] Wu, M., Dick, W. A., Li, W., Wang, X. C., Yang, Q., Wang, T., Xu, L., Zhang, M. & Chen, L. (2016). Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int. Biodeterior. Biodegrad. 2016, 107, 158–164.
  • [76] Wu, S. & Bally, A. W. (2000). Slope tectonics—comparisons and contrasts of structural styles of salt and shale tectonics of the northern Gulf of Mexico with shale tectonics of offshore Nigeria in Gulf of Guinea. In: Mohriak W, Talwani M (eds) Atlantic rifts and continental margins. American Geophysical Union, Washington, pp 151–172
  • [77] Wyszkowska, J.; Borowik, A.; Kucharski, J. (2015). Response of Avena sativa, microorganisms and enzymes to contamination of soil with diesel oil. Plant Soil Evirons. 61, 483-488
  • [78] Yavari, S., Malakahmad, A. & Sapari, N. B. (2015). A review on phytoremediation of crude oil spills. Water Air Soil Pollut 226: 279
  • [79] Zhang, S. et al (2017). Application of bioremediation in oil contaminated soil. J Groundwater Sci Engin 5: 116–123
  • [80] Zhang, B., Zhang, L. & Zhang, X. (2019). Bioremediation of petroleum hydrocarboncontaminated soil by petroleum-degrading bacteria immobilized on biochar. RSC Adv 9: 35304–35311
  • [81] Zhang, C., Wu, D., & Ren, H. (2020). Bioremediation of oil contaminated soil using agricultural wastes via microbial consortium. Scientific Reports, 10: 9188. 8 pages. https://doi.org/10.1038/s41598-020-66169-5

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-c00f18c6-6579-4af7-b0fc-161163d671da
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.