PL EN


Preferences help
enabled [disable] Abstract
Number of results
2020 | 149 | 140-165
Article title

Flawed fundamentals of tensor calculus

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Mathematically illegitimate operational fundamentals of tensor calculus are exposed and shown what they do. Yet tensorial methods are still helpful for handling purely radial physical phenomena, such as those encountered in general relativity, but only in local setting. Tensorial approach is unsatisfactory when applied to partly radial or other than radial (i.e. nonradial) phenomena. But for large-scale phenomena, both local and cosmic, even some radial predictions based on tensorial methods blatantly disagreed with quite unbiased experimental and observed facts. Tensor calculus is fundamentally flawed and had already generated numerous faulty conclusions because it was conceptually compromised, which was done presumably in order to fit the inadequate, as being quite arbitrarily preconceived and espoused by default, formerly unspoken and thus never really challenged, mathematical paradigm of single space reality. This assertion pertains to the abstract operational mathematical reality and to physical reality too. Due to those (operational, conceptual, and even structural/geometrical) problems, tensor calculus remains operationally incomplete and thus faulty.
Discipline
Year
Volume
149
Pages
140-165
Physical description
Contributors
author
  • Science/Mathematics Education Department, Southern University and A&M College, Baton Rouge, LA 70813, USA
References
  • [1] Vessot R.F.C. et al. Test of relativistic gravitation with a space-borne hydrogen maser. Phys. Rev. Lett. 45(26) (1980) 2081-2084
  • [2] Czajko J. On Conjugate Complex Time II: Equipotential Effect of Gravity Retrodicts Differential and Predicts Apparent Anomalous Rotation of the Sun. Chaos Solit. Fract. 11 (2000) 2001-2016
  • [3] Czajko J. Galilei was wrong: Angular nonradial effects of radial gravity depend on density of matter. Int. Lett. Chem. Phys. Astron. 30 (2014) 89-105
  • [4] Czajko J. On the Hafele-Keating experiment. Ann. Phys. (Leipzig) 47 (1990) 517-518
  • [5] Czajko J. Experiments with flying atomic clocks. Exper. Tech. Phys. 39 (1991) 145-147
  • [6] Czajko J. Radial and nonradial effects of radial fields in Frenet frame. Applied Physics Research 3(1) (2011) 2-7 DOI:10.5539/apr.v3n1p
  • [7] Czajko J. Equipotential energy exchange depends on density of matter. Stud. Math. Sci. 7(2) (2013) 40-54
  • [8] Einstein A. The Foundations of the General Theory of Relativity. [pp.111-164 in: H.A. Lorentz et al. The principle of relativity. New York: Dover, 1923, see p.161].
  • [9] Bourguignon J.P. Ricci curvature and Einstein metric. [pp.42-63 in: Ferus D. et al. (Eds.) Global differential geometry and global analysis. Berlin: Springer, 1981, see p.43].
  • [10] Ricci M.M.G. & Levi-Civita T. Méthodes de calcul différentiel absolu et leurs applications. Math. Annalen 54 (1901) 125-201 see p.131; [it can also be found online on zenodo.org].
  • [11] Levi-Civita T. The absolute differential calculus. (Calculus of tensors). New York: Dover, 1977, pp.62f,63,67f,68.
  • [12] Rogawski J. Calculus. New York: Freeman, 2008, p.120.
  • [13] Zill D.G. & Wright W.S. Calculus. Early transcendentals. Sudbury, MA: Jones & Bartlett Publishers, 2009, p.139.
  • [14] Larson R.E. & Hostetler R.P. Calculus with analytic geometry. Lexington, MA: D.C. Heath & Co., 1986, p.131.
  • [15] Anton H. Calculus. New horizon. New York: Wiley, 1999, p.192.
  • [16] Swokowski E.W. Calculus. Late trigonometry version. Boston: PWS Publishing Company, 1992, p.100.
  • [17] Varberg D., Purcell E.J. & Rigdon S.E. Calculus. Upper Saddle River, NJ: Prentice Hall, 2000, p.116.
  • [18] Stewart J. Calculus. Early transcendentals. Pacific Grove, CA: Brooks/Cole Publishing, 1999, p.191.
  • [19] Stein S.K. & Barcellos A. Calculus and analytic geometry. New York: McGraw-Hill Book, 1992, pp.134,228.
  • [20] Salas S.L. & Hille E. Calculus. One and several variables. New York: Wiley, 1990, p.116.
  • [21] Thomas G.B., Jr. & Finney R.L. Calculus and analytic geometry II. Reading, MA: Addison-Wesley, 1996, p.998.
  • [22] Strang G. Calculus. Wellesley, MA: Wellesley-Cambridge Press, 2010, pp.30, 116, 342, 670.
  • [23] Smith R.T. & Minton R.B. Calculus. New York: McGraw-Hill, 2012, pp.136,151.
  • [24] Stewart J. Calculus. Early vectors. Belmont, CA: Brooks/Cole Publishing, 1999, p.163f.
  • [25] Marsden J. & Weinstein A. Calculus II. New York: Springer, 1985, p.358.
  • [26] Czajko J. New product differentiation rule for paired scalar reciprocal functions. World Scientific News 144 (2020) 358-371
  • [27] Czajko J. Finegrained 3D differential operators hint at the inevitability of their dual reciprocal portrayals. World Sci. News 132 (2019) 98-120
  • [28] Czajko J. Dual reciprocal scalar potentials paired via differential operators in Frenet frames make the operators to act simultaneously in each of two paired 3D reciprocal spaces. World Scientific News 137 (2019) 96-118
  • [29] Mercier A. Analytical and canonical formalism in physics. Amsterdam: North-Holland, 1959, p.122.
  • [30] Mercier A. Speculative remarks on physics in general and relativity in particular. [pp.295-303 in: De Sabbata V. & Weber J. (Eds.) Topics in theoretical and experimental gravitation physics. London: Plenum Press, 1977].
  • [31] Czajko J. Operationally complete work done suggests presence of potentials corresponding to repulsive forces. Int. Lett. Chem. Phys. Astron. 37 (2014) 16-30
  • [32] Schouten J.A. Tensor analysis for physicists. New York: Dover, 1988, p.12.
  • [33] Bernacchi G. Tensors made easy. An informal introduction to maths of general relativity. Lexington, KY, 2017, p.71.
  • [34] Young E.C. Vector and tensor analysis. New York: Marcel Dekker, 1978, p.405.
  • [35] Morse P.M. & Feshbach H. Methods of theoretical physics. Part I. New York: McGraw-Hill, 1953, p.31.
  • [36] Buck R.C. Advanced calculus. New York: McGraw-Hill Book, pp.223,383.
  • [37] Feynman R.P., Leighton R.B. & Sands M. The Feynman lectures on physics 1. Mainly mechanics, radiation and heat. Reading, MA: Addison-Wesley, 1977, pp.13-4,39-5.
  • [38] Feynman R.P., Leighton R.B. & Sands M. The Feynman lectures on physics 2. Mainly electromagnetism and matter. Reading, MA: Addison-Wesley, 1977, p.4-4.
  • [39] Czajko J. Linear magnitudes estimated via energy were likely overestimated by over 3.48%. Int. Lett. Chem. Phys. Astron. 32 (2014) 32-41
  • [40] Czajko J. Mathematical gateway to complementary hidden variables in macrophysics. Int. Lett. Chem. Phys. Astron. 50 (2015) 117-142
  • [41] Sadeh D., Knowles S.H. & Yaplee B.S. Search for a frequency shift of the 21-centimeter line from Taurus A near occultation by Sun. Science 159 (1968) 307-308
  • [42] Tribble A.C. Princeton guide to advanced physics. Princeton, NJ: Princeton Univ. Press, 1996, p.36.
  • [43] Sadeh D., Knowles S. & Au B. The effect of mass on frequency. Science 161 (1968) 567-569
  • [44] Szekeres G. Effect of gravitation on frequency. Nature 220 (1968) 1116-1118
  • [45] Czajko J. Equalized mass can explain the dark energy or missing mass problem as higher density of matter in stars amplifies their attraction. World Scientific News 80 (2017) 207-238
  • [46] Czajko J. Complex Conjugate Time in Macro Experiments. Chaos, Solitons & Fractals 13 (2002) 17-23
  • [47] Czajko J. On Conjugate Complex Time I: Complex Time Implies Existence of Tangential Potential that Can Cause Some Equipotential Effects of Gravity. Chaos, Solitons & Fractals 11 (2000) 1983-1992
  • [48] Stephani H. Relativity. An introduction to special and general relativity. Cambridge: Cambridge Univ. Press, 2007, p.237.
  • [49] Hestenes D. & Sobczyk G. Clifford algebra to geometric calculus: A unified language for mathematics and physics. Dordrecht: D. Reidel, 1987, p.25.
  • [50] Cartan É. The theory of spinors. New York: Dover, 1981, pp.7,151.
  • [51] Browne J. Grassmann algebra I: Foundations. Exploring extended vector algebra with Mathematica. Eltham, VIC, Australia: Barnard Publishing, 2012, pp.7,13ff, 15.
  • [52] Hestenes D. Space-Time Algebra. New York: Springer-Birkhäuser, 2015, pp.17ff,18, 19f, 20ff.
  • [53] Baylis W.E. Applications of Clifford algebras in physics. [pp.91-133 in: Abɫamowicz R. & Sobczyk G. (Eds.) Lectures on Clifford (geometric) algebras and applications. Boston: Birkhäuser, 2004, see pp.98,100ff].
  • [54] Cartan É. Selecta. Paris : Gauthier-Villars, 1939, p.24.
  • [55] Cartan E. Sur les formes differentielles en géométrie. [pp.905-907 in : Cartan E. Œuvres complètes t.1 p.2. Paris : Gauthier-Villars, 1955, see p.907].
  • [56] Seeley R.T. Calculus of several variables. An introduction. Glenview, IL: Scott, Foresman & Co., 1970, p.78.
  • [57] DeSabbata V. & Sivaram C. Spin and torsion in gravitation. Singapore: World Scientific, 1994, p.5.
  • [58] Kühne R.W. Cartan’s torsion: Necessity and observational evidence. [p.37-42 in: Dvoeglazov V. & Garrido A.E. (Eds.) Relativity, gravitation, cosmology. New York: Nova Science Publishers, 2004].
  • [59] Cartan E. Euclidean geometry and Riemannian geometry. [pp.179-186 in Pesic P (Ed.) Beyond geometry. Classic papers from Riemann to Einstein. Mineola, NY: Dover, 2007, see p.182].
  • [60] Cartan E. Notice sur les travaux scientifiques. Paris : Gauthier-Villars, 1974, p.118.
  • [61] DeSabbata V. & Sivaram C. Curvature from spin. Found. Phys. Lett. 5(6) (1992) 579-584.
  • [62] Uribe-Vargas R. On singularities, “perestroikas” and differential geometry of space curves. L’Enseignement Mathématique [posted online as math.jussieu.fr/~uribe/dv.pdf ].
  • [63] Kobayashi S. & Nomizu K. Foundations of differential geometry II. New York: Wiley, 1969, p.63.
  • [64] Lassenby A.N. & Doran C.J.L. Geometric algebra, Dirac wavefnctions and black holes. [p.251-283 in: Bergmann P.G. & DeSabbata V. (Eds.) Advances in the interplay between quantum and gravity physics. Dordrecht: Kluwer, 2002, see p.280].
  • [65] Spencer D.E. Vector and tensor analysis. [pp.2848-2853 in: Lerner R.G. & Trigg G.L. (Eds.) Encyclopedia of physics: Vol.2: M-Z. Third, completely revised and enlarged edition. Weinheim: Wiley-VCH Verlag, 2005, see p.2852].
  • [66] Moon P. & Spencer D.E. Theory of holors. Cambridge: Cambridge Univ. Press, 1986, p.5.
  • [67] Landau L.D. & Lifshitz E.M. Course of theoretical physics 2: The classical theory of fields. Oxford: Pergamon Press, 1975, pp.239f,240,241.
  • [68] Hafele J.C. & Keating R.E. Around-the-World Atomic Clocks: Predicted Relativistic Time Gains. Science 177 (4044) (1972) 166–168
  • [69] Hafele J.C. & Keating R.E. Around-the-World Atomic Clocks: Observed Relativistic Time Gains. Science 177 (4044) (1972) 168–170
  • [70] Alley C. P. Proper Time Experiments in Gravitational Fields with Atomic Clocks, Aircraft, and Laser Light Pulses. [pp. 363-427 in: Meystre P. & Scully M. O. (Eds.) Quantum Optics, Experimental Gravity, and Measurement Theory. New York: Plenum, 1983].
  • [71] Meneghetti M. et al. An excess of small-scale gravitational lenses observed in galaxy clusters. Science (2020) 1347-1351
  • [72] Schutz B. Gravity from ground up. Cambridge: The Press Syndicate of the Univ. of Cambridge, 2007, p.56.
  • [73] Weinberg S. Gravitation and cosmology. Principles and applications of the general theory of relativity. New Delhi: Wiley, 2017, p.11ff.
  • [74] Misner C.W., Thorne K.S. & Wheeler J.A. Gravitation. New York: Freeman, 1973, pp.16ff,1050ff.
  • [75] Ohanian H. & Ruffini R. Gravitation and spacetime. New York: Norton, 1994, p.21ff.
  • [76] Hawking S.W. & Ellis G.F.R. The large scale structure of the space-time. Cambridge: Cambridge Univ. Press, 1973, p.309.
  • [77] Czajko J. With Equalized Mass, its Density of Matter can Affect Radial Gravitational Interactions Too. Int. Lett. Chem. Phys. Astron. 54 (2015) 112-121
  • [78] Czajko J. Pairing of infinitesimal descending complex singularity with infinitely ascending, real domain singularity, World Scientific News144 (2020) 56-69
  • [79] Czajko J. Unrestricted division by zero as multiplication by the – reciprocal to zero – infinity. World Scientific News 145 (2020) 180-197
  • [80] Czajko J. Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces. World Scientific News 92(4) (2018) 171-197
  • [81] Czajko J. Complexification of operational infinity. World Scientific News 148 (2020) 60-71
  • [82] Czajko J. Quaternionic division by zero is implemented as multiplication by infinity in 4D hyperspace. World Scientific News 94(4) (2018) 190-216
  • [83] Czajko J. Quaternionic operational infinity. World Scientific News 149 (2020) 23-35
  • [84] Frankel T. The geometry of physics. An introduction. Cambridge: Cambridge Univ. Press, 1997, pp.65,72,73,76.
  • [85] Aris R. Vectors, tensors, and the basic equations of fluid mechanics. New York: Dover, 1989, pp.212f,140ff.
  • [86] Cartan É. The theory of spinors. New York: Dover, 1981, p.96.
  • [87] Cartan E. Sur les équations de la gravitation d’Einstein. Paris : Gautier-Villars, 1922, p.59ff.
  • [88] Einstein A. Elementare Überlegungen zur Interpretation der Grundlagen der Quanten-Mechanik. [pp.33-40 in: - Scientific papers presented to Max Born. Edinburgh: Oliver & Boyd, 1953, see p.34].
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-bff8a24f-2928-422c-8cd6-cf74815f9f8d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.