Preferences help
enabled [disable] Abstract
Number of results
2020 | 25 | 37 - 50
Article title


Title variants
Languages of publication
Three-dimensional (3D) biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative solutions in the biomedical sector, including drug delivery systems, disease modelling and tissue and organ engineering. Due to its remarkable and promising biological and structural properties, chitosan has been widely studied for decades in several potential applications in the biomedical field. However, tools in the form of 3D printers have created new possibilities for the production of chitosan models, implants and scaffolds for cell cultures that are much more precise than existing ones. The article presents current achievements related to the possibility of using chitosan to create new materials for 3D printing in the form of chitosan bioinks, filaments, resins and powders dedicated for bioprinting, fused deposition modelling, stereolithography/digital light processing and selective laser sintering methods, respectively.

37 - 50
Physical description
  • Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdansk University of Technology,
  • Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdansk University of Technology
  • Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdansk University of Technology
  • Gebhardt A; (2012) Understanding Additive Manufacturing: Rapid Prototyping- Rapid Tooling-Rapid Manufacturing. Netherlands.
  • Popelka A, Sobolčiak P, Mrlik M, Nogellova Z, Chodák J, Quederni M, Al-Maadeed MMA, Krupa I; (2018) Foamy phase change materials based on linear low-density polyethylene and paraffin wax blends. Emerg Mater 1, 47-54. DOI: 10.1007/s42247-018-0003-3.
  • Ambrosi A, Pumera M; (2016) 3D-printinng technologies for electrochemical applications. Chem Soc Rev 45, 2740-2755. DOI: 10.1039/C5CS00714C.
  • Muzaffar A, Ahamed MB, Deshmukh K, Thirumalai J; (2019) A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew Sust Energ Rev 101, 123–145. DOI: 10.1016/j.rser.2018.10.026.
  • Sadasivuni KK, Rattan S, Deshmukh K, Muzaffar A, Ahamed MB, Pasha. SKK, Muzamdar P, Waseem S, Grohens Y, Kumar B; (2018) Hybrid Nanofiller for Value Added Rubber Compounds for Recycling in Rubber Recycling, Springer Publications, Doha, Qatar, 310–329. DOI: 10.1039/9781788013482-00310.
  • Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO; (2015) Bioinspired structural materials. Nat Mater 14, 23-36. DOI: 10.1038/nmat4089.
  • Ali A, Ahmad U, Akhtar J; (2020) 3D Printing in Pharmaceutical Sector: An Overview. Pharmaceutical Formulation Design-Recent Practices. IntechOpen.
  • Zhao Cheng S, Sun WY, Yao R, Ouyang L, Ding H, Zhang T, Zhang K; (2014) Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6, 035001. DOI: 10.1088/1758-5082/6/3/035001.
  • Tamayol A, Najafabadi AH, Aliakbarian B, Arab-Tehrany E, Akbari M, Annabi N, Juncker D, Khademhosseini A; (2015) Hydrogel templates for rapid manufacturing of bioactive fibers and 3D constructs. Adv Healthc Mater 4, 2146–2153. DOI: 10.1002/adhm.201500492
  • Shafiee A, Atala A; (2016) Printing Technologies for Medical Application. Trends Mol Med 22, 254-265. DOI: 10.1016/j.molmed.2016.01.003.
  • Bhatia SK, Ramadurai KW; (2017) 3D Printing and Bio-Based Materials in Global Health. Switzerland: Springer International Publishing AG.
  • Liu J, Korpinen R, Mikkonen K, Willför S, Xu C; (2014). Nanofibrillated cellulose originated from birch sawdust after sequential extractions: a promising polymeric material from waste to films. Cellulose 21, 2587-259. DOI: 10.1007/s10570-014-014-0321-4.
  • Zhang LG, Fisher JP, Leong K; (2015). 3D bioprinting and nanotechnology in tissue engineering and regenerative medicine. United States: Academic Press.
  • v. Wijk A, v. Wijk, I; (2015). 3D Printing with Biomaterials-Towards a Sustainable and Circular Economy. Amsterdam: IOS Press.
  • Guvendiren M, Molde J, Soares RMD, Kohn J. (2016) Designing Biomaterials for 3D Printing. ACS Biomaterials Science & Engineering 2, 1679-1693. DOI: 10.1021/acsbiomaterials.6b00121.
  • Murphy SV, Atala A; (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32, 773-785. DOI: 10.1038/nbt.2958.
  • Kyle S, Jessop ZM, Al-Sabah A, Whitaker IS; (2017) ‘Printability’ of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art. Adv Health Mater 6, 1700264. DOI: 10.1002/adhm.201700264.
  • Sultan S, Siqueira G, Zimmermann T, Mathew AP; (2017) 3D printing of nano-cellulosic biomaterials for medical applications. Curr Opin Biomed Eng 2, 29-34. DOI: 10.1016/j.cobme.2017.06.002.
  • Liu J, Willför S, Mihranyan A; (2017) On importance of impurities, potential leachables and extractables in algal nanocellulose for biomedical use. Carbohydr Polym 172, 11-19. DOI: 10.1016/j.carbpol.2017.05.002.
  • Ratner BD, Hoffman AS, Schoen FJ, Lemons JE; (2013) Biomaterials science: an introduction to materials in medicine. (3rd ed. ed.). Canada: Academic Pres.
  • Axpe E, Oyen M; (2016) Applications of Alginate-Based Bioinks in 3D Bioprinting. Int J Mol Sci 17, 1976. DOI: 10.3390/ijms17121976.
  • Munaz A, Vadivelu RK, St. John J, Barton M, Kamble H, Nguyen NT; (2016) Three-dimensional printing of biological matters. Journal of Science: Advanced Materials and Devices 1, 1-17. DOI: 10.1016/j.jsamd. 2016.04.001.
  • Stansbury JW, Idacavage MJ; (2016) 3D Printing with polymers: Challenges among expanding options and opportunities. Dent Mater 32, 54-64. DOI: 10.1016/
  • Singh D, Thomas D; (2019) Advances in medical polymer technology towards the panacea of complex 3D tissue and organ manufacture. Am J Surg 217, 807–808. DOI: 10.1016/j.amjsurg.2018.05.012.
  • Low Z, Chua YT, Ray BM, Mattia D, Metcalfe LS, Patterson DA; (2017) Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J Membr Sci 523, 596-613. DOI: 10.1016/j.memsci.2016.10.006.
  • Reddy P; (2019) Digital Light Processing (DLP)Think 3D. Available: printing-technology-overview.
  • Tiwari SK, Pande S, Agrawal S, Bobade SM; (2015) Selection of selective laser sintering materials for different applications. Rapid Prototyp J 21, 630-648. DOI: 10.1108/RPJ-03-2013-0027.
  • Liu J, Sun L, Xu W, Wang Q, Yu S, Sun J; (2018) Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydr Polym DOI: 10.1016/j.carbpol.2018.11.077
  • Rinaudo M, (2006) Chitin and chitosan: Properties and applications. Prog Polym Sci 31, 603–632. DOI: 10.1016/j.progpolymsci.2006.06.001.
  • Mouryaa VK, Inamdar NN, Tiwari A; (2010) Carboxymethyl Chitosan And Its Applications. Adv MaterLett 1, 11–33. Doi:10.5185/amlett.2010.3108.
  • Wang X, Jiang M, Zhou Z, Gou J, Hui D; (2017) 3D printing of polymer matrix composites: A review and prospective. Compos Part B Eng 110, 442–458. DOI: 10.1016/j.compositesb.2016.11.034.
  • Mania S, Ryl J, Jinn JR, Wang YJ, Michałowska A, Tylingo R; (2019) The Production Possibility of the Antimicrobial Filaments by Co-Extrusion of the PLA Pellet with Chitosan Powder for FDM 3D Printing Technology. Polymers 11, 1893. Doi: 10.3390/polym11111893.
  • Wu CS; (2016) Modulation, functionality, and cytocompatibility of three dimensional printing materials made from chitosan-based polysaccharide composites. Mater Sci Eng C 69, 27–36. DOI: 10.1016/j.msec.2016.06.062.
  • Matet M, Heuzey MC, Pollet E, Ajji A, Avérous L; (2013) Innovative thermoplastic chitosan obtained by thermo-mechanical mixing with polyol plasticizers. Carbohydr Polym 95, 241-251. DOI: 10.1016/j.carbpol.2013.02.052.
  • Grande R, Pessan LA, Carvalho AJF; (2018) Thermoplastic blends of chitosan: A method for the preparation of high thermally stable blends with polyesters. Carbohydr Polym 191, 44-52. DOI: 10.1016/j.carbpol.2018.02.087.
  • Eleftheriadis GK, Ritzoulis C, Bouropoulos N, Tzetzis D, Andreadis DA, Boetker J, Rantanen J, Fatouros DG; (2019). Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: In vitro and ex vivo evaluation. Eur J Pharm Biopharm 144, 180–192. DOI: 10.1016/j.ejpb.2019.09.018.
  • Singh R, Singh G, Kang JS, Kumar R; (2019) On printability of PLA-PEKK-HAp-CS based functional prototypes with FDM: thermo-mechanical investigations. Mater Res Express 6, 115338. DOI: 10.1088/2053-1591/ab4cb7.
  • Ranjan N, Singh R, Ahuj I; (2019) Investigations on joining of orthopaedic scaffold with rapid tooling. Proc I Mech E Part H: J Engineerig in Medicine 233, 754-760. DOI: 10.1177/0954411919852811.
  • Yu Z, Wang Y, Zheng J, Xiang Y, Zhao P, Cui J, Zhou H, Li D; (2019) Rapidly Fabricated Triboelectric Nanogenerator Employing Insoluble and Infusible Biomass Materials by Fused Deposition Modeling. Nano Energy 104382. DOI: 10.1016/j.nanoen.2019.104382.
  • Thuaksuban N, Nuntanaranont T, Suttapreyasri S, Boonyaphiphat P; (2015) Repairing calvarial defects with biodegradable polycaprolactone–chitosan scaffolds fabricated using the melt stretching and multilayer deposition technique. Biomed Mater Eng 25, 347–360. DOI: 10.3233/bme-151539.
  • Zhou D, Chen J, Liu B, Zhang X, Li X, Xu T; (2019) Bioinks for jet-based bioprinting. Bioprinting 16, e00060. DOI:10.1016/j.bprint.2019.e00060.
  • Gasperini L, Mano JF, Reis RL; (2014) Natural polymers for the microencapsulation of cells. J R Soc Interface 11, 20140817. DOI: 10.1098/rsif.2014.0817.
  • Pisani S, Dorati R, Scocozza F, Mariotti C, Chiesa E, Bruni G, Genta I, Auricchio F, Conti M, Conti B; (2020). Preliminary investigation on a new natural based poly (gamma-glutamic acid)/Chitosan bioink. J Biomed Mater Res B 1-15. DOI: 10.1002/jbm.b.34602
  • Lee D, Park JP, Koh MY, Kim P, Lee J, Shin M, Lee H; (2018). Chitosan-catechol: a writable bioink under serum culture media. Biomater Sci 6, 1040–1047. DOI: 10.1039/c8bm00174j
  • Stalling SS, Akintoye SO, Nicoll SB; (2009) Development of photocrosslinked methylcellulose hydrogels for soft tissue reconstruction. Acta Biomater 5, 1911–1918. DOI: 10.1016/j.actbio.2009.02.020.
  • Tan H, Chu CR, Payne KA, Marr KG; (2009) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30, 2499–2506. DOI: 10.1016/j.biomaterials.2008.12.080.
  • Park KM, Lee SY, Joung, YK, Na JS, Lee MC, Park KD; (2009) Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater 5, 1956–1965. DOI: 10.1016/j.actbio.2009.01.040.
  • Sokker HH, AbdelGhaffar AM, Gad YH, Aly AS; (2009) Synthesis and characterization of hydrogels based on grafted chitosan for the controlled drug release. Carbohydr Polym 75, 222–229. DOI: 10.1016/j.carbpol.2008.06.015.
  • Sashiwa H, Yamamori N, Ichinose Y, Sunamoto J, Aiba S; (2003) Michael Reaction of Chitosan with Various Acryl Reagents in Water. Biomacromolecules 4, 1250-1254. DOI: 10.1021/bm030022o.
  • Li, Chong & Han, Qiuyan & Guan, Ying & Zhang, Yongjun. (2015). Michael reaction of chitosan with acrylamides in an aqueous alkali–urea solution. Polymer Bulletin. 72. 10.1007/s00289-015-1390-8.
  • Ma, Guiping & Zhang, Xiaodan & Han, Jing & Song, Guoqiang & Nie, Jun. (2009). Photo-polymeriable chitosan derivative prepared by Michael reaction of chitosan and polyethylene glycol diacrylate (PEGDA). International journal of biological macromolecules. 45. 499-503. 10.1016/j.ijbiomac.2009.08.007.
  • Cheng YL, Chen F; (2017) Preparation and characterization of photocured poly (ε-caprolactone) diacrylate/poly (ethylene glycol) diacrylate/chitosan for photopolymerization-type 3D printing tissue engineering scaffold application. Mat Sci Eng C 81, 66–73. Doi:10.1016/j.msec.2017.07.025.
  • Cebe T, Ahuja N, Monte F, Awad K, Vyavhare K, Aswath P, Huang J, Brotto M, Varanasi V; (2018) Novel 3D-printed methacrylated chitosan-laponite nanosilicate composite scaffolds enhance cell growth and biomineral formation in MC3T3 preosteoblasts. Mater Res 1–18. Doi: 10.1557/jmr.2018.260.
  • Shen Y, Tang H, Huang X, Hang R, Zhang X, Wang Y, Yao X; (2020) DLP printing photocurable chitosan to build bio-constructs for tissue engineering. Carbohydr Polym 235, 115970. DOI: 10.1016/j.carbpol.2020.115970.
  • Bardakova KN, Demina TS, Grebenik EA, Minaev NV, Akopova TA, Bagratashvili VN, Timashev PS; (2018) IOP Conf Ser Mater Sci Eng 347. 012009. DOI: 10.1088/1757-899X/347/1/012009.
  • Liu Y, Lin Y, Jiao T, Lu G, Liu J; (2019). Photocurable modification of inorganic fillers and their application in photopolymers for 3D printing. Polym Chem 10. DOI: 10.1039/c9py01445d.
  • Brysch C, Wold E, Robles Hernandez FC, Eberthm JF; (2012) Sintering of Chitosan and Chitosan Composites. Volume 3: Design, Materials and Manufacturing, Parts A, B, and C, doi: 10.1115/imece2012-86393.
  • Wei T, Zhang X, Sun H, Mao M; (2018) Selective laser sintering and performances of porous titanium implants. West China Journal of Stomatology 36, 532-538. DOI: 10.7518/hxkq.2018.05.013.
  • Zhang P-S, Xin Y, Cao C-L, Al F-R; (2019) Preparation and properties of polycaprolactone porous bone scaffold modified with chitosan/ hydroxyapatite on the surface. J Mater Eng 47, 64-70. DOI: 10.11868/j.issn.1001-4381.2018.000452.
  • Sun P, Zhang L, Tao S; (2019) Preparation of hybrid chitosan membranes by selective laser sintering for adsorption and catalysis. Mater Des 173, 107780. DOI: 10.1016/j.matdes.2019.107780.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.