PL EN


Preferences help
enabled [disable] Abstract
Number of results
2007 | 7 | 3 | 188-194
Article title

Rola białka PrPc w procesie różnicowania neuralnego in vitro i neurogenezy

Content
Title variants
EN
The role of PrPc protein in process of neural differentiation in vitro and neurogenesis
Languages of publication
EN PL
Abstracts
EN
The phenomena of neural differentiation in vitro and neurogenesis in vivo involve a numerous cellular proteins to create the differentiation signaling pathways. The role of the cellular isoform of prion protein PrPc – a product of the PRNP gene, seems also to be connected with a process of neural differentiation. The primary investigations in this field revealed increase of PRNP gene expression during both neurogenesis and neural differentiation in vitro; however, the majority of results were obtained with the use of animal models or cancer- derived cell lines. The latest experiments using neural stem/progenitor cells as an experimental models, seem to confirm the previous results, suggesting participation of PrPc in a neural differentiation. On the basis of the further analyses, PrPc appears to be a part of differentiation signaling pathways. Moreover, PrPc activity may contribute to acquire and maintain the functions specific for neurons. Surprisingly, the prion protein- -deficient cells are still able to differentiate into neurons, although the process of differentiation is delayed. The controversy nevertheless persists about expression of PRNP gene during glial cells differentiation that is reflected in inconsistent published results, beginning with hypothesis postulating the importance of “astrocytic” PrPc for neural differentiation, ending with data presenting no PrPc expression in glial lineage. Studying the literature data does not allow to create the uniform PRNP expression pattern during neural differentiation. It rather seems to be an individual feature, which should be considered in the broader context of particular cell type and the specificity of metabolic processes accompanying neural differentiation in vitro or neurogenesis in vivo.
PL
Różnicowanie neuralne in vitro lub proces neurogenezy in vivo to zjawiska angażujące szereg białek komórkowych, będących ogniwami szlaków sygnalizacyjnych sterujących tymi procesami. Białkiem, którego funkcja również wydaje się związana z procesem różnicowania, jest białko prionu, izoforma komórkowa PrP1 - produkt genu PRNP. Pionierskie badania w tej dziedzinie ujawniły wzrost poziomu ekspresji genu PRNf podczas neurogenezy czy też różnicowania neuronalnego in vitro, aczkolwiek większość wyników uzyskane z wykorzystaniem modeli neurogenezy zwierząt lub linii komórkowych pochodzenia nowotworowego. Najnowsze badania, w których jako model eksperymentalny wykorzystywane są neuralne komórki macierzyste/progenitorowe, potwierdzają zarysowany uprzednio obraz, sugerując udział PrPc w różnicowaniu neuronalnym. Kolejne analizy, będące próbą sprecyzowania funkcji PrPc w tym zjawisku, ukazują to białko jako potencjalne ogniwo szlaków sygnalizacyjnych sterujących procesami różnicowania. Co więcej, wydaje się, iż PrPc jest białkiem, którego aktywność związana jest z nabywaniem oraz realizowaniem przez komórki funkcji specyficznych dla neuronów. Komórki pozbawione białka PrPc nadal są jednak zdolne do różnicowania neuronalnego, chociaż proces ten jest opóźniony. Kwestią kontrowersyjną jest natomiast ekspresja genu PRNP w trakcie różnicowania komórek glejowych, czego dowodem jest brak spójnych doniesień, poczynając od danych sugerujących, iż obecność PrPc w astrocytach jest niezbędna dla prawidłowego przebiegu różnicowania neuralnego, na wynikach definitywnie wykluczających obecność PrPc w linii glejowej kończąc. Analiza danych z literatury nie pozwala więc stworzyć uniwersalnego wzorca ekspresji genu PRNP w procesie różnicowania neuralnego. Wydaje się, iż jest to cecha, którą należy rozpatrywać indywidualnie dla danego typu komórek oraz konkretnego procesu metabolicznego, towarzyszącego zjawiskom tak złożonym, jak proces różnicowania neuralnego in vitro czy neurogeneza in vivo.
Discipline
Year
Volume
7
Issue
3
Pages
188-194
Physical description
References
  • 1. Riesner D.: Biochemistry and structure of PrP(C) and PrP(Sc). Br. Med. Bull. 2003; 66: 21-33.
  • 2. Martins V.R., Mercadante A.F., Cabral A.L. i wsp.: Insights into the physiological function of cellular prion protein. Braz. J. Med. Biol. Res. 2001; 34: 585-595.
  • 3. Bendheim P.E., Brown H.R., Rudelli R.D. i wsp.: Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 1992; 42: 149-56.
  • 4. Horiuchi M., Yamazaki N., Ikeda T i wsp.: Cellular form of prion protein (PrPC) exists in many non-neuronal tissues of sheep. J. Gen. Virol. 1995; 76: 2583-2587.
  • 5. Tremblay P, Bouzamondo-Bernstein E., Heinrich C. iwsp.: Developmental expression of PrP in the post-implantation embryo. Brain Res. 2007; 1139: 60-67.
  • 6. Liberski P.P.: Pasażowalne encefalopatie gąbczaste. Wyd. Upowszechnianie Nauki - Oświata „UN-O” Sp. z o.o., Warszawa 1999.
  • 7. Sakaguchi S.: Roles of prion protein and prion protein-protein in neurodegeneration: implication in the pathogenesis of prion diseases. W: Doupher V.B.: Prions: New research. Nova Science Publishers Inc., 2006.
  • 8. Weissmann C., Flechsig E.: PrP knock-out and PrP transgenic mice in prion research. Br. Med. Bull. 2003; 66:43-60.
  • 9. Satoh J., Yamamura T.: Gene expression profile following stable expression of the cellular prion protein. Cell Mol. Neurobiol. 2004; 24: 793-814.
  • 10. Lopes M.H., Hajj G.N., Muras A.G. i wsp.: Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J. Neurosci. 2005; 25: 11330-11339.
  • 11. Zanata S.M., Lopes M.H., Mercadante A.F. i wsp.: Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J. 2002; 21: 3307-3316.
  • 12. Chiarini L.B., Freitas A.R., Zanata S.M. i wsp.: Cellular prion protein transduces neuroprotective signals. EMBO J. 2002; 21: 3317-3326.
  • 13. Lasmezas C.I.: Putative functions of PrP(C). Br. Med. Bull. 2003; 66: 61-70.
  • 14. Brown D.R., Besinger A.: Prion protein expression and superoxide dismutase activity. Biochem J. 1998; 334: 423-429.
  • 15. Schneider B., Mutel V., Pietri M. i wsp.: NADPH oxidase and extracellular regulated kinases 1/2 are targets of prion
  • protein signaling in neuronal and nonneuronal cells. Proc. Natl Acad. Sci. USA 2003; 100: 13326-13331.
  • 16. Malaise M.E., Brabeck C., Kloz U. i wsp.: Roles of cellular prion protein in oxidative stress and mitochondrial function. PRION 2006 Strategies, advances and trends towards protection of society. 3rd-6th October, 2006, Torino.
  • 17. Mouillet-Richard S., Schneider B., Pradines E. i wsp.: Cellular prion protein signaling in serotonergic neuronal cells. Ann. NY Acad. Sci. 2007; 1096: 106-119.
  • 18. Kim B.H., Lee H.G., Choi J.K. i wsp.: The cellular prion protein (PrPC) prevents apoptotic neuronal cell death and mitochondrial dysfunction induced by serum deprivation. Brain Res. Mol. Brain Res. 2004; 124: 40-50.
  • 19. RoucouX., Giannopoulos P.N., Zhang Y. i wsp.: Cellular prion protein inhibits proapoptotic Bax conformational change in human neurons and in breast carcinoma MCF-7 cells. Cell Death Differ. 2005; 12: 783-795.
  • 20. Christensen H.M., Harris D.A.: Cellular lifesaver: exploring the role of cellular prion protein in neuroprotection. PRION 2006 Strategies, advances and trends towards protection of society. 3rd-6th October, 2006, Torino.
  • 21. Paitel E., Fahraeus R., Checler F.: Cellular prion protein sensitizes neurons to apoptotic stimuli through Mdm2-regulated and p53-dependent caspase 3-like activation. J. Biol. Chem. 2003; 278: 10061-10066.
  • 22. Saghafi S., Spilman P., Tanz Z. i wsp.: PrP topology as a determinant of pro- or anti-apoptotic function. PRION 2005 Between fundamentals and society’s needs. 19L-21st October, 2005, Dusseldorf.
  • 23. Saghafi S., Spilman PR., DeArmond S.J. i wsp.: Regulation of PrPc topology is developmentally dependent. PRION 2006 Strategies, advances and trends towards protection of society. 3rd-6^ October, 2006, Torino.
  • 24. Pan T., Wong B.S., Liu T i wsp.: Cell-surface prion protein interacts with glycosaminoglycans. Biochem. J. 2002; 368: 81-90.
  • 25. Gauczynski S., Peyrin J.M., Haik S. i wsp.: The 37-kDa/ 67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J. 2001; 20: 5863-5875.
  • 26. Monnet C., Marthiens V, Enslen H. i wsp.: Heterogeneity and regulation of cellular prion protein glycoforms in neuronal cell lines. Eur. J. Neurosci. 2003; 18: 542-548.
  • 27. Starke R., Harrison P., Mackie I. i wsp.: The expression of prion protein PrPC in the megakaryocyte lineage. J. Thromb. Haemost. 2005; 36: 1266-1273.
  • 28. Steele A.D., Emsley J.G., Ozdinler P.H. i wsp.: Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc. Natl Acad. Sci. USA2006; 103: 3416-3421.
  • 29. Manson J., West J.D., Thomson V. i wsp.: The prion protein gene: a role in mouse embryogenesis? Development. 1992; 115: 117-122.
  • 30. Miele G., Alejo Blanco A.R. i wsp.: Embryonic activation and developmental expression of the murine prion protein gene. Gene Expr. 2003; 11: 1-12.
  • 31. Lazarini F., Deslys J.P., Dormont D.: Regulation of the glial fibrillary acidic protein, beta actin and prion protein mRNAs during brain development in mouse. Brain Res. Mol. Brain Res. 1991; 10: 343-346.
  • 32. Zhang C.C., Steele A.D., Lindquist S. i wsp.: Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc. Natl Acad. Sci. USA 2006; 103: 2184-2189.
  • 33. Martinez del Hoyo G., Lopez-Bravo M., Metharom P. i wsp.: Prion protein expression by mouse dendritic cells is restricted to the nonplasmacytoid subsets and correlates with the maturation state. J. Immunol. 2006; 177: 6137-6142.
  • 34. Dodelet VC., Cashman N.R.: Prion protein expression in human leukocyte differentiation. Blood 1998; 91:1556-1561.
  • 35. Fujisawa M., Kanai Y., Nam S.Y. i wsp.: Expression of Prnp mRNA (prion protein gene) in mouse spermatogenic cells. J. Reprod. Dev. 2004; 50: 565-570.
  • 36. Massimino M.L., Stella R., Ferrari J. i wsp.: Pursuing the biological function of PrPc by means of a novel experimental paradigm. PRION 2006 Strategies, advances and trends towards protection of society. 3rd-6th October, 2006, Torino.
  • 37. Sales N., Hassig R., Rodolfo K. i wsp.: Developmental expression of the cellular prion protein in elongating axons. Eur. J. Neurosci. 2002; 15: 1163-1177.
  • 38. Moya K.L., Sales N., Hassig R. i wsp.: Immunolocalization of the cellular prion protein in normal brain. Microsc. Res. Tech. 2000; 50: 58-65.
  • 39. Lawson VA., Collins S.J., Masters C.L. iwsp.: Prion protein glycosylation. J. Neurochem. 2005; 93: 793-801.
  • 40. Lehmann S., Casanova D., Milhavet O.: Neural stem cells can propagate prions in culture. PRION 2005 Between fundamentals and society’s needs. 19th-21st October, 2005, Dusseldorf.
  • 41. Milhavet O., Casanova D., Chevallier N. i wsp.: Neural stem cell model for prion propagation. Stem Cells 2006: 24: 2284-2291.
  • 42. Doetsch F., Caille I., Lim D.A. i wsp.: Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999; 97: 703-716.
  • 43. Seri B., Garcia-Verdugo J.M., McEwen B.S. i wsp.: Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 2001; 21: 7153-7160.
  • 44. Horner P.J., Palmer T.D.: New roles for astrocytes: the nightlife of an “astrocyte”. La vida loca! Trends Neurosci. 2003; 26: 597-603.
  • 45. Witusik M., Gresner S.M., Hulas-Bigoszewska K. i wsp.: Neuronal and astrocytic cells, obtained after differentiation of human neural GFAP-positive progenitors, present heterogeneous expression of PrPC. Brain Res. 2007; 1186: 65-73.
  • 46. Rieske P., Azizi S.A., Augelli B. i wsp.: A population of human brain parenchymal cells express markers of glial, neuronal and early neural cells and differentiate into cells of neuronal and glial lineages. Eur. J. Neurosci. 2007; 25: 31-37.
  • 47. Adle-Biassette H., Verney C., Peoc’h K. i wsp.: Immunohistochemical expression of prion protein (PrPC) in the human forebrain during development. J. Neuropathol. Exp. Neurol. 2006; 65: 698-706.
  • 48. Graner E., Mercadante A.F., Zanata S.M. iwsp.: Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res. Mol. Brain Res. 2000; 76: 85-92.
  • 49. Coitinho A.S., Freitas A.R., Lopes M.H. i wsp.: The interaction between prion protein and laminin modulates memory consolidation. Eur. J. Neurosci. 2006; 24: 3255-3264.
  • 50. Graner E., Mercadante A.F., Zanata S.M. i wsp.: Laminin-induced PC-12 cell differentiation is inhibited following laser inactivation of cellular prion protein. FEBS Lett. 2000; 482: 257-260.
  • 51. Schmitt-Ulms G., Legname G., Baldwin M.A. i wsp.: Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J. Mol. Biol. 2001; 314: 1209-1225.
  • 52. Santuccione A., Sytnyk V, Leshchynska I. i wsp.: Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J. Cell Biol. 2005; 169: 341-354.
  • 53. Chen S., Mange A., Dong L., Lehmann S., Schachn-er M.: Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol. Cell Neurosci. 2003; 22: 227-233.
  • 54. Kuwahara C., Kubosaki A., Nishimura T. i wsp.: Enhanced expression of cellular prion protein gene by insulin or nerve growth factor in immortalized mouse neuronal precursor cell lines. Biochem. Biophys. Res. Commun. 2000; 268: 763-766.
  • 55. Zawlik I., Witusik M., Hulas-Bigoszewska K. i wsp.: Regulation of PrPC expression: nerve growth factor (NGF) activates the prion gene promoter through the MEK1 pathway in PC12 cells. Neurosci. Lett. 2006; 400: 58-62.
  • 56. Mouillet-Richard S., Laurendeau I., Vidaud M. i wsp.: Prion protein and neuronal differentiation: quantitative analysis of prnp gene expression in a murine inducible neuroectodermal progenitor. Microbes Infect. 1999; 1: 969-976.
  • 57. Mouillet Richard S., Nishida N., Laude H. i wsp.: Prion infection interferes with the serotonergic differentiation of the murine 1C11 neuronal progenitor. PRION 2006 Strategies, advances and trends towards protection of society. 3rd-6th October, 2006, Torino.
  • 58. Kellermann O., Lafay-Chebassier C., Ermonval M. i wsp.: From stem cells to prion signalling. C.R. Biol. 2002; 325: 9-15.
  • 59. Mouillet-Richard S., Pietri M., Schneider B. i wsp.: Modulation of serotonergic receptor signaling and cross-talk by prion protein. J. Biol. Chem. 2005; 280: 4592-4601.
  • 60. Bailly Y., Haeberle A.M., Blanquet-Grossard F. i wsp.: Prion protein (PrPC) immunocytochemistry and expression of the green fluorescent protein reporter gene under control of the bovine PrP gene promoter in the mouse brain. J. Comp. Neurol. 2004; 473: 244-269.
  • 61. Herms J., Tings T., Gall S. i wsp.: Evidence of presynaptic location and function of the prion protein. J. Neurosci. 1999; 19: 8866-8875.
  • 62. Spielhaupter C., Schatzl H.M.: PrPC directly interacts with proteins involved in signaling pathways. J. Biol. Chem. 2001;276:44604-44612.
  • 63. Herms J.W, Korte S., Gall S. i wsp.: Altered intracellular calcium homeostasis in cerebellar granule cells of prion protein-deficient mice. J. Neurochem. 2000; 75: 1487-1492.
  • 64. Brandner S.: CNS pathogenesis of prion diseases. Br. Med. Bull. 2003; 66:131-139.
  • 65. Barenco M.G., Valon C., Hammann J. i wsp.: The N-terminal domain of the cellular prion protein is not necessary to induce neuronal differentiation and neurite outgrowth. PRION 2006 Strategies, advances and trends towards protection of society. 3rd-6th October, 2006, Torino.
  • 66. Moser M., Colello R.J., Pott U. i wsp.: Developmental expression of the prion protein gene in glial cells. Neuron 1995; 14: 509-517.
  • 67. Lazarini F., Castelnau P., Chermann J.F. i wsp.: Modulation of prion protein gene expression by growth factors in cultured mouse astrocytes and PC-12 cells. Brain Res. Mol. Brain Res. 1994; 22: 268-274.
  • 68. Lima F.R., Arantes C.P., Muras A.G. i wsp.: Cellular prion protein expression in astrocytes modulates neuronal survival and differentiation. J. Neurochem. 2007; 103: 2164-2176.
  • 69. Brown D.R., Mohn C.M.: Astrocytic glutamate uptake and prion protein expression. Glia 1999; 25: 282-292.
  • 70. Brown D.R.: Role of the prion protein in copper turnover in astrocytes. Neurobiol. Dis. 2004; 15: 534-543.
  • 71. McClellan K.A., Slack R.S.: Novel functions for cell cycle genes in nervous system development. Cell Cycle 2006; 5: 1506-1513.
  • 72. Yu S., Zhang I.Z., Xu Q.: Genes associated with neuronal differentiation of precursors from human brain. Neuroscience 2006; 141: 817-825.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-be869d65-30b2-497b-ae3b-f2653a84eb52
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.