Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 16 | 3 | 81-87

Article title

Rola wybranych microRNA w procesie neoplazmatycznym

Content

Title variants

EN
The role of selected microRNAs in the neoplasmatic process

Languages of publication

PL EN

Abstracts

PL
Praca prezentuje rolę wybranych cząsteczek microRNA (miRNA) i ich udział w mechanizmach wewnątrzkomórkowych determinujących zjawisko kancerogenezy i progresję zmian nowotworowych. Koncentruje się na problematyce związanej z  rolą miRNA jako onkogenów lub genów supresorowych. Autorzy dokonują przeglądu najnowszego piśmiennictwa dotyczącego znaczenia wybranych microRNA w procesie neoplazmatycznym, w tym rakach regionu głowy i szyi.
EN
The work presents the role of selected microRNA molecules (miRNA) and their participation in intracellular mechanisms determining the phenomenon of carcinogenesis and the progression of neoplastic changes. It focuses on the problems related to the role of miRNA as oncogenes or suppressor genes. The authors review the latest literature on the importance of selected microRNAs in the neoplasmatic process, including cancers of the head and neck region.

Discipline

Publisher

Year

Volume

16

Issue

3

Pages

81-87

Physical description

Contributors

  • Oddział Laryngologiczny, Wojewódzki Specjalistyczny Szpital im. M. Pirogowa w Łodz
  • Oddział Laryngologiczny, Wojewódzki Szpital Specjalistyczny im. Marii Skłodowskiej-Curie w Zgierzu
  • Katedra i Klinika Otolaryngologii i Laryngologii Onkologicznej Uniwersytetu Medycznego w Łodzi

References

  • 1. Hukowska-Szematowicz B, Deptuła W. Biologiczna rola mikroRNA – nowe dane. Post Biol Komórki 2010; 37(3): 585-97.
  • 2. Di Leva G, Garofalo M, Croce C. microRNAs in cancer. Annu Rev Pathology 2014; 9: 287-314.
  • 3. Huang T, Alvarez A, Hu B, Cheng SY. Noncoding RNAs in cancer and cancer steam cells. Chin J Cancer 2013; 32(11): 582-93.
  • 4. Wang D, QiuCh, Zhang H, Wang J, Cui Q, Yin Y. Human mikroRNA oncogens and tumor suppressors show significantly different biological patterns: from functions to targets. PLoS ONE 2010; 5(9): e13067.
  • 5. Mansoori B, Mohammadi A, Shirjang S, Baradaran B. Micro-RNAs: The new potential biomarkers in cancer diagnosis, prognosis and cancer therapy. Cell Mol Biol 2015; 61(5): 1-10.
  • 6. Zhong X, Coukos Z, Zhang L. miRNAs in Human Cancer. Methods Mol Biol 2012; 822: 295-306.
  • 7. Khawar MB, Fatima N, Abbasi MH, Mehmood R, Suqaina SK, Sheikh N. Head and Neck Cancer: Epidemiology and role of MicroRNAs. (in) Diagnosis and Management of Head and Neck Cancer. Akarslan Z. (ed.) 2017; Chapter 2: 5-35.
  • 8. Childs G, Fazzari M, Kung G, Kawachi N, BrandweinGensler M, McLemore M, et al. Low-level expression of microRNAs let-7d and MIR- 205 are prognostic markers of head and neck squamous cell carcinoma. Am J Pathol 2009; 174(3): 736-45.
  • 9. Yu S, Wu Y, Liu Y, Deng H, Shen Z, Xiao B, Guo J. miR- 21, miR-106b and miR-375 as novel potential biomarkers for laryngeal squamous cell carcinoma. Curr Pharm Biotechnol 2014; 15(5): 503-8.
  • 10. Wang J, Zhou Y, Lu J, Sun Y, Xiao H, Liu M, Tian L. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med Oncol 2014; 31(9): 148.
  • 11. Ou H, Li Y, Kang M. Activation of miR-21 by STAT3 induces proliferation and suppresses apoptosis in nasopharyngeal carcinoma by targeting PTEN gene. PLoS One 2014; 9(11): e109929.
  • 12. de Carvalho AC, Scapulatempo-Neto C, Maia DC, Evangelista AF, Morini MA, Carvalho AL, et al. Accurancy of mikroRNA as markers for the detection of lymph node metastases in patients witch head and neck squamous cell carcinoma. BMC Med 2015; 13: 108.
  • 13. Lamperska KM, Kozłowski P, Kolenda T, Teresiak A, Blizniak R, Przybyla W, et al. Unpredictable changes of selected miRNA in expression profile of HNSCC. Cancer Biomark 2016; 16(1): 55-64.
  • 14. Zhang H, Hu B, Wang Z, Zhang F, Wei H, Li L. miR-181c contributes to cisplatin resistance in non-small cell lung cancer cells by targeting Wnt inhibition factor 1. Cancer Chemother Pharmacol 2017; 80(5): 973-84.
  • 15. Bourguignon LY, Earle C, Wong G, Spevak CC, Krueger K. Steam cell marker (Nanog) and Stat-3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene 2012; 31(2): 149-60.
  • 16. Zheng G, Li N, Jia X, Peng C, Luo L, Deng Y, et al. MYCN-mediated miR-21 overexpression enhances chemoresistance via targeting CADM1 in tongue cancer. J Mol Med (Berl) 2016; 94(10): 1129-41.
  • 17. Dai Y, Xie CH, Neis JP, Fan CY, Vural E, Spring PM. MicroRNA expression profiles of head and neck squamous cell carcinoma witch docetaxel-induced multidrug resistance. Head Neck 2011; 33(6): 786-91.
  • 18. Zheng Y, Lv X, Wang X, Wang B, Shao X, Huang Y, et al. MiR-181b promotes chemo resistance in breast cancer by regulating Bim expression. Oncol Rep 2016; 35(2): 683-90.
  • 19. Wang X, Li Q, Jin H, Zou H, Xia W, Dai N, et al. miR-424 acts as a tumor radiosensitizer by targeting aprataxin in cervical cancer. Oncotarget 2016; 7(47): 77508-15.
  • 20. Zeng MS. Noncoding RNAs in cancer diagnosis. Adv Exp Med Biol 2016; 927: 391-427.
  • 21. Xin Y, Zheng L. The role of MicroRNAs expression in laryngeal cancer. Oncotarget 2015; 6(27): 23297-305.
  • 22. Lopez-Serra P, Esteller M. DNA methylation-associated silencing of tumor-supressor microRNAs in cancer. Oncogene 2012; 31(13): 1609-22.
  • 23. Pfeffer S, Yang ChH, Pfeffer LM. The role of miR-21 in cancer. Drug Dev Res 2015; 76(6): 270-7.
  • 24. Zhang X, Gee H, Rose B, Lee CS, Clark J, Elliott M, et al. Regulation of the tumour suppressor PDCD4 by miR-449 and miR-21 in oropharyngeal cancers. BMC Cancer 2016; 16: 86.
  • 25. Yang Y, Meng H, Peng Q, Yang X, Gan R, Zhao L, et al. Downregulation of mikroRNA-21 expression restrains non-small cell lung cancer cell proliferation and migration through upregulation of programmed cell death 4. Cancer Gene Ther 2015; 22(1): 23-9.
  • 26. Sun Z, Li S, Kaufman AM, Albers AE. miR-21 increases the programmed cell death 4 gene – regulated cell proliferation in head and neck squamous carcinoma cell lines. Oncol Rep 2014; 32(5): 2283-9.
  • 27. Avissar M, McClean MD, Kelsey KT, Marsit CJ. MicroRNA expression in head and neck cancer associates with alcohol consumption and survival. Carcinogenesis 2009; 30(12): 2059-63.
  • 28. Hsu CM, Lin PM, Wang YM, Chen ZJ, Lin SF, Yang MY. Circulating miRNA is a novel marker for head and Neck squamous cell carcinoma. Tumor Biol 2012; 33(6): 1933-42.
  • 29. Cervigne NK, Reis PP, Machado J, Sadikovic B, Bradley G, Galloni NN, et al. Identification of mikroRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet 2009; 18(24): 4818-29.
  • 30. Brito JA, Gomes CC, Guimarães AL, Campos K, Gomez RS. Relationship between mikroRNA expression levels and histopatological features of dysplasian in oral leukoplakia. J Oral Pathol Med 2014; 43(3): 211-6.
  • 31. Manikandan M, Deva Magendhra Rao AK, Rajkumar KS, Rajaraman R, Munirajan AK. Altered levels of miR-21, miR-125b-2*, miR-138, miR-155, miR-184, and miR-205 in oral squamous cell carcinoma and association with clinicopathological characteristics. J Oral Pathol Med 2015; 44(10): 792-800.
  • 32. Yau TO, Wu CW, Dong Y, Tang CM, Ng SS, Chan FK, et al. microRNA-221 and microRNA-18a identification in stool as potential biomarkers for the non-invasive diagnosis of colorectal carcinoma. Br J Cancer 2014; 111(9): 1765-71.
  • 33. Zhou L, Jiang F, Chen X, Liu Z, Ouyang Y, Zhao W, et al. Downregulation of miR-221/222 by a microRNA sponge promotes apoptosis in oral squamous cell carcinoma cells through upregulation of PTEN. Oncol Lett 2016; 12(6): 4419-26.
  • 34. Yilmaz SS, Guzel E, Karatas OF, Yilmaz M, Creighton CJ, Ozen M. MiR-221 as a pre- and postoperative plasma biomarker for larynx cancer patients. Laryngoscope 2015; 125(12): E377-81.
  • 35. Ma L. MicroRNA and metastasis. Adv Cancer Res 2016; 132: 165-207.
  • 36. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNAgenes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101(9): 2999-3004.
  • 37. Lynam-Lennon N, Maher SG, Reynolds JV. The roles of microRNA in cancer and apoptosis. Biol Rev Camb Philos Soc 2009; 84(1): 55-71.
  • 38. Pekarsky Y, Croce CM. Role of miR-15/16 in CLL. Cell Death Differ 2015; 22(1): 6-11.
  • 39. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostic, monitoring and therapeutics. A comprehensive review. Embo Mol Med 2012; 4: 143-59.
  • 40. Pekarsky Y, Balatti V, Croce CM. BCL2 and miR-15/16: from gene discovery to treatment. Cell Death Differ 2018; 25(1): 21-6.
  • 41. Balzeau J, Menezes MR, Cao S, Hagan JP. The LIN28/let-7 Pathway in Cancer. Front Genet 2017; 8: 31.
  • 42. Slack FJ. MicroRNAs regulate expression of oncogenes. Clin Chem 2013; 59(1): 325-6.
  • 43. Si F, Sun J, Wang C. MicroRNA-138 suppresses cell proliferation in laryngeal squamous cell carcinoma via inhibiting EZH2 and PI3K/AKT signaling. Exp Ther Med 2017; 14(3): 1967-74.
  • 44. Lubov J, Maschietto M, Ibrahim I, Mlynarek A, Hier M, Kowalski LP, et al. Meta-analysis of microRNAs expression in head and neck cancer: uncovering association with outcome and mechanisms. Oncotarget 2017; 8(33): 55511-24.
  • 45. Xu R, Zeng G, Gao J, Ren Y, Zhang Z, Zhang Q, et al. miR-138 suppresses the proliferation of oral squamous cell carcinoma cells by targeting Yes-associated protein 1. Oncol Rep 2015; 34(4): 2171-8.
  • 46. Zhang Q, He Y, Nie M, Cai W. Roles of miR-138 and ISG15 in oral squamous cell carcinoma. Exp Ther Med 2017; 14(3): 2329-34.
  • 47. Zheng S, Zhang X, Wang X, Li J. Downregulation of miR- 138 predicts poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Biomark 2017; 20(1): 49-54.
  • 48. Liu Y, Zhang W, Liu K, Liu S, Ji B, Wang Y. miR-138 suppresses cell proliferation and invasion by inhibiting SOX9 in hepatocellular carcinoma. Am J Transl Res 2016; 8(5): 2159-68.
  • 49. Luo J, Chen P, Xie W, Wu F. MicroRNA-138 inhibits cell proliferation in hepatocellular carcinoma by targeting Sirt1. Oncol Rep 2017; 38(2): 1067-74.
  • 50. Pang L, Li B, Zheng B, Niu L, Ge L. miR-138 inhibits gastric cancer growth by suppressing SOX4. Oncol Rep 2017; 38(2): 1295-302.
  • 51. Engkvist ME, Stratford EW, Lorenz S, Meza-Zepeda LA, Myklebost O, Munthe E. Analysis of the mir-34 family functions in breast cancer reveals annotation error of miR- 34b. Sci Rep 2017; 7(1): 9655.
  • 52. Nadal E, Chen G, Gallegos M, Lin L, Ferrer-Torres D, Truini A, et al. Epigenetic inactivation of microRNA-34b/c predicts poor disease-free survival in early stage lung adenocarcinoma. Clin Cancer Res 2013; 19(24): 6842-52.
  • 53. Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ 2010; 17(2): 193-9.
  • 54. Cheng CY, Hwanq CL, Corney DC, Flesken-Nikitin A, Jiang L, Öner GM, et al. miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment. Cell Rep 2014; 6(6): 1000-7.
  • 55. Zhao K, Cheng J, Chen B, Liu Q, Xu D, Zhang Y. Circulating microRNA-34 family low expression correlates with poor prognosis in patients with non-small cell lung cancer. J Thorac Dis 2017; 9(10): 3735-46.
  • 56. Fang LL, Sun BF, Huang LR, Yuan HB, Zhang S, Chen J, et  al. Potent inhibition of miR-34b on migration and invasion in metastatic prostate cancer cell by regulating the TGF-β pathway. Int J Mol Sci 2017; 18(12): 2762.
  • 57. Tanaka N, Toyooka S, Soh J, Kubo T, Yamamoto H, Maki Y, et al. Frequent methylation and oncogenic role of microRNA-34b/c in small-cell lung cancer. Lung Cancer 2012; 76(1): 32-8.
  • 58. Kasinski AL, Slack FJ. miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse of lung adenocarcinoma. Cancer Res 2012; 72(21): 5576-87.
  • 59. Huang B, Zhai W, Hu G, Huang C, Xie T, Zhang J, et al. MicroRNA-206 acts as a tumor suppressor in bladder cancer via targeting YRDC. Am J Transl Res 2016; 8(11): 4705-15.
  • 60. Xiao H, Xiao W, Cao J, Li H, Guan W, Guo X, et al. miR-206 functions as novel cell cycle regulator and tumor suppressor in clear-cell renal cell carcinoma. Cancer Lett 2016; 374(1): 107-16.
  • 61. Wei C, Wang S, Ye ZQ, Chen ZQ. miR-206 inhibits renal cell cancer growth by targeting GAK. Med Sci 2016; 36(6): 852-8.
  • 62. Yunqiao L, Vanke H, Jun X, Tangmeng G. MicroRNA-206 down-regulated in hepatocellular carcinoma, suppresses cell proliferation and promotes apoptosis. Hepatogastroenterology 2014; 61(133): 1302-7.
  • 63. Lin F, Yao L, Xiao J, Liu DF, Ni Z. miR-206 functions as tumor supressor and directly targets K-ras in human oral squamous cell carcinoma. Onco Targets Ther 2014; 7: 1583-91.
  • 64. Yu WF, Wang HM, Lu BC, Zhang GZ, Ma HM, Wu ZY. miR-206 inhibits human laryngeal squamous cell carcinoma cell growth by regulation of cyclinD2. Eur Rev Med Pharmacol Sci 2015; 19(14): 2697-702.
  • 65. Wang T, Dong XM, Zhang FL, Zhang JR. miR-206 enhances nasopharyngeal carcinoma radiosensitivity by targenting IGF1. Kaohsiung J MedSci 2017; 33(9): 427-32.
  • 66. Zhang T, Liu M, Wang C, Lin C, Sun Y, Jin D. Downregulation of miR-206 promotes proliferation and invasion of laryngeal cancer by regulating VEGF expression. Anticancer Res 2011; 31(11): 3859-63.
  • 67. Courthod G, Franco P, Palermo L, Pisconti S, Numico G. The role of microRNA in head and neck cancer: current knowledge and perspectives. Molecules 2014; 19: 5704-16.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-bcedc589-6b08-4b98-9157-124b6f2bef72
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.