Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 26 | 89-100

Article title

EFFECT OF CHITOSAN FILM SURFACE STRUCTURE ON THE CONTACT ANGLE

Content

Title variants

Languages of publication

EN

Abstracts

EN
The aim of this study was to evaluate the influence of the surface microstructure of chitosan films on the contact angle. Films without plasticising additives made of chitosan or regenerated chitosan were selected for the tests. A sessile drop method based on the European Pharmacopoeia was used to determine the contact angle. Due to the method of film production, the contact angle measurements were made on both the top and bottom surfaces of the film. For chitosan or regenerated chitosan films, the method of preparation slightly affected the difference in wettability between the top and bottom of the films, as confirmed by scanning electron microscopy. On the other hand, the wettability of the top and bottom of cellulose films varied greatly depending on the side of the film. Both chitosan and cellulose films had a homogeneous structure. There were differences in the microstructure between the top and the bottom of the sample in the cellulose film, a factor that affected the contact angle and thus the wettability of the surface.

Keywords

Year

Volume

26

Pages

89-100

Physical description

Contributors

  • Research Network Łukasiewicz - Institute of Biopolymers and Chemical Fibres
author
  • Institute of Security Technologies “MORATEX”
author
  • Research Network Łukasiewicz - Institute of Biopolymers and Chemical Fibres

References

  • Paulina Pająk, Teresa Fortuna, Izabela Przetaczek-Rożnowska, (2013) Opakowania jadalne na bazie białek i polisacharydów – charakterystyka i zastosowanie, ŻYWNOŚĆ. Nauka. Technologia. Jakość,. 2 (87), 5–18.
  • Katarzyna Sztuka, Ilona Kołodziejska, (2008) Jadalne folie oraz powłoki powierzchniowe z polimerów naturalnych stosowane do opakowań żywności.’ Polimery, 53, nr 10, 725–729.
  • Marian Żenkiewicz, (2000) Adhezja I modyfikowanie warstwy wierzchniej tworzyw wielkocząsteczkowych, WNT PWN, Warszawa.
  • Szymańska Iwona, Żbikowska Anna, Marciniak-Łukasiak Katarzyna (2019) Opakowania do żywności – wymagania, kontrowersje i trendy, Przemysł Spożywczy, T.73, nr 3, 46–50. DOI: 10.15199/65.2019.3.8
  • Jayakumar R., Prabaharan M., Sudheesh Kumar P.T., Nair S. V., Tamura H. (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances 29, 323–337. DOI: 10.1016/j.biotechadv.2011.01.005
  • Wiśniewska-Wrona M., El Fray M. (2019) Physicochemical and functional properties of polimer biocomposites, Polimery, 64, nr 1, 23–33. DOI: dx.doi.org/10.14314
  • Wiśniewska-Wrona M., El Fray M. (2018) Functional three-component polymeric biocomposites for the treatment of bedsores, Progress on Chemistry and Application of Chitin and its Derivatives (PCACD), Vol. XXIII, , 185–206. DOI:10.15259.PCACD.23.19
  • Mucha M., (2010) Wydawnictwo Naukowo-Techniczne. Chitozan wszechstronny polimer ze źródeł odnawialnych.
  • Zhao L., Mitomo H., Zhai M., Yushii F, Nagasawa N., Kume T (2003) Carbohydrate Polym., 53, 439.
  • Kumar M., Muzzarelli R.A.A., Muzzarelli C., Sashiwa H., Domb A.J. (2004) Chemical Reviews, 104, 6017.
  • Liu G.F, Guan Y.L., Yang D.Z., Li Z., Yao K.D.: J. Appl. (2001) Polymer Sci., 79, 1324.
  • Katarzyna Gottfried, Katarzyna Sztuka, Hanna Stratroszczyk, Ilona Kołodziejska (2010) Biodegradowalne i jadalne opakowania do żywności z polimerów naturalnych, Most Wiedzy.
  • Nagahama H., Maeda H., Kasjiki T., Jayakumar R., Furuike T., Tamura H. (2009) Preparation and characterization on novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydrate Polymers 76, 255–260.
  • Busilacchi A., Gigante A., Mattioli-Belmonte M., Manzotti S., Muzzarelli, R.A.A. (2013) Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration.Carbohydrate Polymers 98 665–676. https://doi.org/10.1016/j.carbpol.2013.06.044
  • Douglas T.E., Skwarczynska A., Modrzejewska Z., Balcaen L., Schaubroeck D., Lycke S., Vanhaecke F., Vandenabeele P., Dubruel P., Jansen J.A., Leeuwenburgh S.C.G. (2013) Acceleration of gelation and promotion of mineralization of chitosan hydrogels by alkaline phosphatase. International Journal of Biological Macomolecules 56C 122–132 https://doi.org/10.1016/j.ijbiomac.2013.02.002
  • Wiśniewska- Wrona M., Pałys B., Bodek K.H. (2012) Study on the usability of polymer complexes in the form of films applied in bedsore treatments, FIBRES & TEXTILES in Eastern Europe, Vol. 20, No. 6B, (96); 149–153
  • Shepherd R., Reader S., Falshaw A. (1997) Chitosan functional properties. Glycoconjugate Journal, 14, 535–542.
  • Begin A., Van Calsretren M.R. (1999) Antimicrobial films produced from chitosan. International Journal of Biological Macromolecules, 26, 63–67.
  • Srinivasa P.C., Ramesh M.N., Tharanathan R.N. (2007) Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food Hydrocolloids, 21, 1113–1122.
  • Piotrowska B., Kołodziejska I., Januszewska-Jóźwiak, K., Wojtasz-Pająk, A. (2005) Effect of transglutaminase on the solubilityof chitosan-gelatin films. In: Advances in Chitin Science, vol. VIII, Struszczyk H., Domard A., Peter M.G., Pospieszny H. (Eds.), Institute of Plant Protection, Poznań, 71–78.
  • Chen R.H., Hwa H.D., (1996) Effect of molecular weight of chitosan with the same degree of deacetylation on the thermal, mechanical and permeability properties of the prepared membrane, Carbohydrate Polymers, 29, 353–358.
  • Praca zbiorowa (1997) “Polymer Surfaces and Interfaces: Characterization, Modyfication and Application” (red. Mittal K. L., Lee K-W.), VSP, Utrecht.
  • Goud R. J. ‚ Stromberg R.R. Eds. (1979) Surface and Colloid Science, vol. 11, Plenum Press, New York
  • Dariusz Bieliński, Piotr Lipiński, Barbara Wolska (2006) Porównanie Metod Oznaczania Statycznego Kąta Zwilżania powierzchni cieczą małocząsteczkową”, Problemy Eksploatacyjne 1-2006, 131–144.
  • European Pharmacopoeia 8.0: (2014) Wettability of porous solids including powders, vol. I, p.2.9.45
  • Danuta Barnat- Hunek, (2016) Swobodna energia powierzchniowa jako czynnik kształtujący skuteczność hydrofobizacji w ochronie konstrukcji budowlanych, Monografia 2016 Politechnika Lubelska.
  • Wawro Dariusz, Kazimierczak Janusz (2008) Forming Conditions and Mechanical Properties of Potato Starch Films, FIBRES & TEXTILES in Eastern Europe January / December / B 2008, Vol. 16, No. 6 (71) 112.
  • Wawro D., Stęplewski W., Bodek A.; (2009) FIBRES & TEXTILES in Eastern Europe, Manufacture of Cellulose Fibres from Alkaline Solutions of Hydrothermally-Treated Cellulose Pulp., Vol. 17, No. 3 (74) pp. 18–22.
  • EP 1317573
  • Bogucki Z.A. (2006) Porównanie kąta zwilżalności silikonowych mas wyścielających Flexor i Molloplast B w badaniach in vitro. Protetyka Stomatologiczna, LVI, 5, 386–389.
  • Sobolewska E., Frączak B., Błażewicz S., Seńko K., Lipski M. (2009) Porównanie kąta zwilżalności podstawowych materiałów protetycznych stosowanych w wykonawstwie protez ruchomych w badaniach in vitro, Protetyka Stomatologiczna, LIX, 6, 401-406

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-bba713c5-f582-4c5b-a868-044431fc856d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.