Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 22 | 1 | 12-16

Article title

Znaczenie procesów angiogenezy w patofizjologii astmy oskrzelowej

Content

Title variants

EN
The role of angiogenesis in the pathophysiology of bronchial asthma

Languages of publication

PL EN

Abstracts

PL
Przewlekłemu zapaleniu w przebiegu astmy oskrzelowej towarzyszy rozbudowa sieci naczyń krwionośnych w drogach oddechowych. Wzmożone procesy angiogenezy u chorych na astmę odzwierciedlają zwiększone zapotrzebowanie tkanek na tlen i substancje odżywcze i wynikają z nadmiernej aktywności licznych czynników proangiogennych uwalnianych zarówno przez tkanki budujące ścianę oskrzeli (nabłonek oddechowy, przerośnięte mięśnie gładkie, fibroblasty), jak również produkowane przez komórki immunologiczne i cytokiny typu Th2. W odpowiedzi na alergen dochodzi też do zwiększonej rekrutacji progenitorowych komórek śródbłonka naczyniowego do płuc. W efekcie rozbudowana sieć naczyń krwionośnych u chorych na astmę sprzyja podtrzymywaniu zapalenia i jest ważnym czynnikiem przebudowy dróg oddechowych prowadzącej do nieodwracalnych zmian strukturalnych. Oddziaływanie na angiogenezę może stać się w przyszłości kolejnym filarem leczenia astmy oskrzelowej.
EN
Chronic inflammation in asthma is accompanied by the increased vascular network in airways. Increased neovascularization occurs due to higher tissue demands for the oxygen and nutrients and results from the increased activity of proangiogenic factors released by tissues in airways (bronchial epithelium, smooth muscle cells, fibroblasts) as well as the immune cells and Th2-derived cytokines. Enhanced recruitment of progenitor endothelial cells occurs in response to allergen exposition. Intensified vascular network in asthma facilitates inflammation and supports bronchial remodeling leading to irreversible structural changes. In the future, modulation of angiogenesis may become another way of asthma treatment.

Keywords

Discipline

Year

Volume

22

Issue

1

Pages

12-16

Physical description

Contributors

  • Klinika Immunologii, Reumatologii i Alergii, Uniwersytet Medyczny w Łodzi
  • Klinika Immunologii, Reumatologii i Alergii, Uniwersytet Medyczny w Łodzi

References

  • 1. Bosse Y, Pare PD, Seow CY. Airway wall remodeling in asthma: from the epithelial layer to the adventitia. Curr Allergy Asthma Rep 2008; 8: 357-66.
  • 2. Bergeron C, Tulic MK, Hamid Q. Airway remodelling in asthma: from benchside to clinical practice. Can Respir J 2010; 17: e85-93.
  • 3. Wanner A, Mendes ES. Airway endothelial dysfunction in asthma and chronic obstructive pulmonary disease: a challenge for future research. Am J Respir Crit Care Med 2010; 182: 1344-51.
  • 4. Paredi P, Barnes PJ. The airway vasculature: recent advances and clinical implications. Thorax 2009; 64: 444-50.
  • 5. Grigoras A, Căruntu ID, Grigoraş CC i wsp. Relationship between immunohistochemical assessment of bronchial mucosa microvascularization and clinical stage in asthma. Rom J Morphol Embryol 2012; 53: 485-90.
  • 6. Barbato A, Turato G, Baraldo S i wsp. Epithelial damage and angiogenesis in the airways of children with asthma. Am J Respir Crit Care Med 2006; 174: 975-81.
  • 7. Tanaka H, Yamada G, Saikai T i wsp. Increased airway vascularity in newly diagnosed asthma using a high-magnification bronchovideoscope. Am J Respir Crit Care Med 2003; 168: 1495-9.
  • 8. Khor YH, Teoh AK, Lam SM i wsp. Increased vascular permeability precedes cellular inflammation as asthma control deteriorates. Clin Exp Allergy 2009; 39: 1659-67.
  • 9. Asosingh K, Cheng G, Xu W, Savasky BM i wsp. Nascent endothelium initiates Th2 polarization of asthma. J Immunol 2013; 190: 3458-65.
  • 10. Imaoka H, Punia N, Irshad A i wsp. Lung homing of endothelial progenitor cells in humans with asthma after allergen challenge. Am J Respir Crit Care Med 2011; 184: 771-8.
  • 11. Asosingh K, Vasanji A2, Tipton A i wsp. Eotaxin-Rich Proangiogenic Hematopoietic Progenitor Cells and CCR3+ Endothelium in the Atopic Asthmatic Response. J Immunol 2016; 196: 2377-87.
  • 12. Liekens S, De Clercq E, Neyts J. Angiogenesis: regulators and clinical applications. Biochem Pharmacol 2001; 61: 253-70.
  • 13. Ribatti D, Puxeddu I, Crivellato E i wsp. Angiogenesis in asthma. Clin Exp Allergy 2009; 39: 1815-21.
  • 14. Harkness LM, Ashton AW, Burgess JK. Asthma is not only an airway disease, but also a vascular disease. Pharmacol Ther 2015; 148: 17- 33.
  • 15. Salvato G. Quantitative and morphological analysis of the vascular bed in bronchial biopsy specimens from asthmatic and non-asthmatic subjects. Thorax 2001; 56: 902-6.
  • 16. Meyer N, Akdis CA. Vascular endothelial growth factor as a key inducer of angiogenesis in the asthmatic airways. Curr Allergy Asthma Rep 2013; 13: 1-9.
  • 17. Rydell-Tormanen K, Johnson JR, Fattouh R i wsp. Induction of vascular remodeling in the lung by chronic house dust mite exposure. Am J Respir Cell Mol Biol 2008; 39: 61-7.
  • 18. Capetandes A, Horne NS, Frieri M. Dermatophagoides extract- -treated confluent type II epithelial cells (cA549) and human lung mesenchymal cell growth. Ann Allergy Asthma Immunol 2005; 95: 381-8.
  • 19. Asosingh K, Swaidani S, Aronica M i wsp. Th1- and Th2-dependent endothelial progenitor cell recruitment and angiogenic switch in asthma. J Immunol 2007; 178: 6482-94.
  • 20. Asosingh K, Hanson JD, Cheng G i wsp. Allergen-induced, eotaxin-rich, proangiogenic bone marrow progenitors: a blood-borne cellular envoy for lung eosinophilia. J Allergy Clin Immunol 2010; 125: 918-25.
  • 21. Vrugt B, Wilson S, Bron A i wsp. Bronchial angiogenesis in severe glucocorticoid-dependent asthma. Eur Respir J 2000; 15: 1014-21.
  • 22. Keglowich LF, Borger P. The Three A's in Asthma - Airway Smooth Muscle, Airway Remodeling & Angiogenesis. Open Respir Med J 2015; 9: 70-80.
  • 23. Hoshino M, Takahashi M, Aoike N. Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis. J Allergy Clin Immunol 2001; 107: 295-301.
  • 24. Simcock DE, Kanabar V, Clarke GW i wsp. Induction of angiogenesis by airway smooth muscle from patients with asthma. Am J Respir Crit Care Med 2008; 178: 460-8.
  • 25. Simcock DE, Clarke GW, O'Connor BJ i wsp. Proangiogenic activity in bronchoalveolar lavage fluid from patients with asthma. Am J Respir Crit Care Med 2007; 176: 146-53.
  • 26. Chakir J, Shannon J, Molet S i wsp. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF- -beta, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol 2003; 111: 1293-8.
  • 27. Huerta-Yepez S, Baay-Guzman GJ, Bebenek IG i wsp. Hypoxia inducible factor promotes murine allergic airway inflammation and is increased in asthma and rhinitis. Allergy 2011; 66: 909-18.
  • 28. Duong HT, Erzurum SC, Asosingh K. Pro-angiogenic hematopoietic progenitor cells and endothelial colony-forming cells in pathological angiogenesis of bronchial and pulmonary circulation. Angiogenesis 2011; 14: 411-22.
  • 29. Hoshino M, Nakamura Y, Hamid QA. Gene expression of vascular endothelial growth factor and its receptors and angiogenesis in bronchial asthma. J Allergy Clin Immunol 2001; 107: 1034-8.
  • 30. Asai K, Kanazawa H, Kamoi H i wsp. Increased levels of vascular endothelial growth factor in induced sputum in asthmatic patients. Clin Exp Allergy 2003; 33: 595-9.
  • 31. Chetta A, Zanini A, Foresi A i wsp. Vascular endothelial growth factor up-regulation and bronchial wall remodelling in asthma. Clin Exp Allergy 2005; 35: 1437-42.
  • 32. Lopez-Guisa JM, Powers C, File D i wsp. Airway epithelial cells from asthmatic children differentially express proremodeling factors. J Allergy Clin Immunol 2012; 129: 990-7 e6.
  • 33. de Paulis A, Prevete N, Fiorentino I i wsp. Expression and functions of the vascular endothelial growth factors and their receptors in human basophils. J Immunol 2006; 177: 7322-31.
  • 34. Lee CG, Link H, Baluk P i wsp. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med 2004; 10: 1095-103.
  • 35. Green CE, Turner AM. The role of the endothelium in asthma and chronic obstructive pulmonary disease (COPD). Respir Res 2017; 18: 20.
  • 36. Makowska JS, Cieslak M, Jarzebska M i wsp. Angiopoietin-2 concentration in serum is associated with severe asthma phenotype. Allergy Asthma Clin Immunol 2016; 12: 8.
  • 37. Matsuda A, Fukuda S, Matsumoto K i wsp. Th1/Th2 cytokines reciprocally regulate in vitro pulmonary angiogenesis via CXC chemokine synthesis. Am J Respir Cell Mol Biol 2008; 38: 168-75.
  • 38. Skaria T, Burgener J, Bachli E i wsp. IL-4 Causes Hyperpermeability of Vascular Endothelial Cells through Wnt5A Signaling. PLoS One 2016; 11: e0156002.
  • 39. Chalubinski M, Wojdan K, Luczak E i wsp. IL-33 and IL-4 impair barrier functions of human vascular endothelium via different mechanisms. Vascul Pharmacol 2015; 73: 57-63.
  • 40. Corrigan CJ, Wang W, Meng Q i wsp. T-helper cell type 2 (Th2) memory T cell-potentiating cytokine IL-25 has the potential to promote angiogenesis in asthma. Proc Natl Acad Sci U S A 2011; 108: 1579-84.
  • 41. Gregory LG, Jones CP, Walker SA i wsp. IL-25 drives remodelling in allergic airways disease induced by house dust mite. Thorax2011; 68: 82-90.
  • 42. Numasaki M, Lotze MT, Sasaki H. Interleukin-17 augments tumor necrosis factor-alpha-induced elaboration of proangiogenic factors from fibroblasts. Immunol Lett 2004; 93: 39-43.
  • 43. Chauhan SK, Jin Y, Goyal S i wsp. A novel pro-lymphangiogenic function for Th17/IL-17. Blood 2011; 118: 4630-4.
  • 44. Tuder RM, Yun JH, Bhunia A i wsp. Hypoxia and chronic lung disease. J Mol Med (Berl) 2007; 85: 1317-24.
  • 45. Byrne AJ, Jones CP, Gowers K i wsp. Lung macrophages contribute to house dust mite driven airway remodeling via HIF-1alpha. PLoS One 2011; 8: e69246.
  • 46. Herbert SP, Stainier DY. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 2011; 12: 551-64.
  • 47. Goleva E, Hauk PJ, Hall CF i wsp. Corticosteroid-resistant asthma is associated with classical antimicrobial activation of airway macrophages. J Allergy Clin Immunol 2008; 122: 550-9 e3.
  • 48. Sun Y, Wang J, Li H i wsp. The effects of budesonide on angiogenesis in a murine asthma model. Arch Med Sci 2013; 9: 361-7.
  • 49. Chetta A, Marangio E, Olivieri D. Inhaled steroids and airway remodelling in asthma. Acta Biomed 2003; 74: 121-5.
  • 50. Wang K, Liu CT, Wu YH i wsp. Budesonide/formoterol decreases expression of vascular endothelial growth factor (VEGF) and VEGF receptor 1 within airway remodelling in asthma. Adv Ther 2008; 25: 342-54.
  • 51. Huang M, Liu X, DU Q i wsp. Inhibitory effects of sunitinib on ovalbumin-induced chronic experimental asthma in mice. Chin Med J (Engl) 2009; 122: 1061-6.
  • 52. Suzaki Y, Hamada K, Sho M i wsp. A potent antiangiogenic factor, endostatin prevents the development of asthma in a murine model. J Allergy Clin Immunol 2005; 116: 1220-7.
  • 53. Burgess JK, Boustany S, Moir LM i wsp. Reduction of tumstatin in asthmatic airways contributes to angiogenesis, inflammation, and hyperresponsiveness. Am J Respir Crit Care Med 2010; 181: 106-15.
  • 54. Doyle TM, Ellis R, Park HJ i wsp. Modulating progenitor accumulation attenuates lung angiogenesis in a mouse model of asthma. Eur Respir J 2011; 38: 679-87.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-b940f630-8fe0-48c4-83c6-4e58cc8fe9b2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.