Biosynthesis of antibacterial silver nano-particles from *Aspergillus terreus*

P. Shivakumar Singh¹,a, G. M. Vidyasagar²,b

¹Department of Botany, Palamuru University, Mahabubnagar - 509001, Telangana, India
²Medicinal Plants and Microbiology Research Laboratory, Department of Post Graduate Studies and Research in Botany, Gulbarga University, Gulbarga - 585 106, Karnataka, India

a,bE-mail address: shivakumarsinghp@gmail.com, gm.vidyasagar@rediffmail.com

ABSTRACT

Bio-synthesis of silver nano-particles using a soil fungi for potential synthesis of metal nano-particles was examined. The hurried decline of silver (Ag⁺) ions was monitored using UV-visible spectrophotometer and showed formation of silver nano-particles within 19 minutes. Transmission electron microscopy (TEM) showed that the synthesized silver nano-particles are varied from 16-57 nm and have the varying in shapes like round, rod, uneven. Further the XRD analysis confirms the nano-crystalline phase of silver structure. FTIR examinations confirms the Silver particles. The present examination documents the Biosynthesized silver nano-particles thus created have shown admirable antibacterial activity. The current study, it discloses the increasing both concentration increases the rate of reduction and decreases the particle size.

Keywords: Bio-synthesis, Silver nanoparticles, UV, TEM

1. INTRODUCTION

Nanoparticles considered as noble metals, originated to have impending solicitations in numerous arenas like microelectronics (Y.Li. et al., 1999), optical devices (P.V. Kamat et al., 2002), catalysis (Schmid, 1992), drug delivery system (S. Mann,1996) antibacterial consequence, biological sensors, textile and filters (Elechignerra J, 2005), etc., (Gajendran N. 2007, Kathiresan K et al., 2009) Synthesis of nano-particles retaining microorganisms has fascinated much due to their customary optical, chemical, photoelectron chemical and

(Received 27 December 2017; Accepted 10 January 2018; Date of Publication 11 January 2018)
electronic properties. Numerous biological organisms, such as bacteria, fungi, yeast and plants either intra or extracellular (Castro-longoria E, 2010), which are sophisticated production yields and with low incidentals. Now a day’s mycological synthesis of silver nanoparticles playing an important role in medicinal preparations. Fungi are the best candidates in the synthesis of metal nano-particles, because of their ability to secrete large amount of enzyme (Basavaraj S. et al., 2007, Saeed Moharrer, 2012) and easy to isolate from different sources like soil, air, plants etc. In the current report researchers have reporting the biological methods for the synthesis of Silver nanoparticles using Fungi Aspergillus terreus for potential synthesis of metal nanoparticles.

2. MATERIALS AND METHODS

Sample collection

The soil samples were collected from around the administration building of Palamuru University campus of Mahabubnagar Dist., Telangana State, India respectively. Samples were transferred into sterile plastic bags and brought to Laboratory and stored in laboratory conditions for further processing.

Isolation and inoculation

The soil samples were further used for the serial dilution for the soil fungi isolations. The isolated fungi will be pure cultured in the repeating of the experiment repeating number of times with respectably. The isolated fungi will be identified as Aspergillus terreus using help of Barnet. The fungi was further sub cultured on PDA plates and slants in order to obtain pure culture. Pure isolates were cultured in 250 ml conical flask containing 100 ml liquid media Czepak-do broth keeping on rotator orbital shaker for seven days at 120 rpm.

Thereafter cultured material sieved by funnel separating media content. Obtained biomass inoculated in 250 ml conical flask containing 100ml sterilized distilled water and kept for 3 days on Orbital shaker for agitation at the speed of 150 rpm. After the incubation, the cell filtrate was collected and used for the synthesis of nanoparticles.

Biosynthesis of Silver nano-particles

10 ml culture filtrate of the fungi was mixed with 50 ml of 1 mM Silver nitrate solution in 250 ml conical flask and agitated at room temperature; control (without Silver nitrate, only biomass) was also run along with experimental flask.

After beginning and 24 hours of time interval culture filtrate and Silver nitrate are turned into Orange brown due to reduction of Silver nitrate to Silver ions, the formation of nanoparticles understood from the UV- Visible spectroscopy and X-Ray diffraction studies.

Characterization of Synthesized Silver Nano-particles

UV- Visible spectroscopy

The reduction of Silver ions was confirmed by qualitative testing of supernatant by UV-Visible spectrophotometer. The UV –Visible spectroscopy measurements were performed on Elico spectrophotometer as a resolution of 1nm from 300 to 800 nm.
XRD study

Sample was powdered and prepared for X-Ray diffraction. The target was cuk. β (λ= 1.54Å) the generator was operated as 40 KV and 30 mA current.

The scanning range (20) was selected from 10 to 80 angle, scanning speed of 2.00 deg./min and chart spread of 20 mm/min were used for precise determination of lattice parameters. Highly purity selection powder was used as an internal standard. The Coherently diffracting Crystallography domain size (dxrd) of the Silver nano particle was calculated from X-ray diffraction (XRD) line broadening after subtracting the contribution from the cuk β component (Rachignor correction) and correcting the instrumental width. The integral line width was used in the Scherrer formula to calculate dxrd of the (III) plane for silver.

3. RESULTS AND DISCUSSION

In the present work we have reported biological method for the production of silver nanoparticles using selected fungi. The size of the Silver nano particle found to be 30-55 nm from Transmission electron microscope observations.

Inset of Fig. 1 shows Fungal Biomass with Silver nitrate ions at the beginning and after 8 and 72 hours of reaction. It is observed that the color of the solution turned from colorless to brown after the 8 hour of reaction, indicating the formation of Silver nanoparticles. This arises owing to surface plasma vibration in the metal nanoparticles (Langford, S. D. and Boor, P. J. 1996, Parikh, C. K. (1989) Schvartsman, S. 1992, Monroy, C. Y Castillo, P. 2000, Martínez, M. E., 2002). This important observation indicates that the reduction of Silver nitrate into Silver ions extracellular.

Inset of Fig. 2, shows distinct and fairly broad absorption band centered at 450 nm. The presence of broad resonance indicates an aggregated structure of silver nanoparticles in the film.
Figure 2. Mycosynthesis of silver nanoparticles using *Aspergillus terreus* aqueous extract treating with AgNO$_3$ solution at room temperature. A) Silvernitrate (AgNO$_3$) solution, B) Formation of Silvernanoparticles using *Aspergillus terreus* aqueous extract.

Fig. 3. UV–Vis spectrum of Biosynthesized Silvernanoparticles showing surface plasmon peak at 422 nm.
UV-Vis spectra recorded from the aqueous silver nitrate solution after 8, 24, 48 and 72 hours of reaction with the biomass are shown as curve 2, 3 and 4 respectively in figure 2. It is clear that there is a presence of silver particles in solution, thus distinctly pointing to surface reduction of the silver ions as the most probable mechanism for the synthesis of silver nanoparticles by fungus.

A possible mechanism for the presence of silver nanoparticles in the fungal biomass could be the extra cellular reduction of the silver ions in solution followed by precipitation onto the cells.

![Figure 4. XRD patterns of Biosynthesized Silvernanoparticles from Aspergillus fumigatus](image)

Figure 4, shows XRD analysis, peaks assigned to the corresponding diffraction signals (111), (200), (220) and (311) facets of silver. The mean particle diameter of silver nanoparticles was calculated from the XRD pattern according to the line width of the (111) plane, refraction peaks using the scherrer equation. The calculated average particle size of the silver was found to be 27-55nm.
Based on Biosynthesized Silvernanoparticles from *Aspergillus terreus* antibacterial activity at 80µl/well showed maximum against *B. Subtilis* followed by *E. Coli*, Whereas the moderate antibacterial activity was observed against *C. albicans*, *Staphylococcus* shown in graph 1. Two negative controls i.e., selected fungi aqueous extract and AgNO₃ solution did not show activity. Streptomycin sulphate used as standards alongside test organisms showed the inhibition zones of 21.00 mm respectively. (Graph 1).
Graph 1. Antibacterial activity of Biosynthesized Silver nanoparticles from *Aspergillus terreus*

4. CONCLUSION

In the current upshot the nanoparticles were naturally, eco-friendly synthesized using selected fungal species biomass isolated from soil of Palamuru University campus soil samples, Mahabubnagar. The cubiclescum of fungi was confronted with 1mm Silver nitrate, change of mixture from colour less to light orange brown, dark brown.

This indicates the production of Silver nanoparticles in the reaction mixture and Size of synthesized nano-particles was measured 30-55 nm by XRD analysis and with the TEM observations. The final falloutsand conclusion of the isolated fungi PU-1 (*Aspergillus terreus*) was protuberant manufacturer of Silver nanoparticles.

ACKNOWLEDGEMENT

Authors are highly thankful to IIT Bombay, JNTU Hyderabad for provide the equipment facility.

References


