Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2023 | 49 | 88-110

Article title

Origin of cattle breeds in East Africa and introduction to general breeding science: A – review

Content

Title variants

Languages of publication

EN

Abstracts

EN
Since the domestication of cattle more than 10,000 years ago, cattle have been critical in the shift of human society from nomadic hunter-gatherers to sedentary farming communities across most of Europe, Asia, and Africa. Although our understanding of ancestral population relationships is limited, cattle domestication is thought to have occurred on two or three occasions, giving rise to the taurine (B. taurus) and indicine (B. indicus) species, which share a common ancestor with the aurochs (B. primigenius) 250,000 years ago. Indicine and taurine cattle were domesticated in the Indus Valley and the Fertile Crescent, respectively; however, a third domestication event for taurine has been hypothesized in Egypt's Western Desert. Because of their recent split, African indicine cattle share a lot of genetic variation with Asian indicine cattle, as well as with African taurine cattle through gene flow. Although further research is needed to detangle the complicated human-mediated dispersion patterns of domestic cattle, scenarios involving unidirectional or bidirectional migratory events between European taurine and Asian indicine cattle are also feasible. As a result, our research contributes to a better understanding of the impact of previous demographic history on present cow genetic variation, laying the groundwork for future research into alternate migration pathways for early domestic populations.

Year

Volume

49

Pages

88-110

Physical description

Contributors

  • National Agricultural Biotechnology Research Center, P.O. Box: 31, Holeta, Ethiopia

References

  • [1] Armando, C., Aurora, G., Dorado, D. (2013). Allelic diversity and its implications for the rate of adaptation. Genet. 195: 1373–1384
  • [2] Albers, P. K., and McVean, G. (2018). Dating genomic variants and shared ancestry in population-scale sequencing data. PLoS. Bio. 8: 1–26
  • [3] Angress, S., and Reed, C. A. (2014). Origin and descent of domestic mammals. Nature. 54: 3–7
  • [4] Allais, S., Levéziel, H., Payet-Duprat, N., Hocquette, J.F., Lepetit, J., Rousset, S., Denoyelle, C., Bernard-Capel, C., Journaux, L. and Bonnot, A. (2010). The two mutations, Q204X and nt821, of the myostatin gene affect carcass and meat quality in young heterozygous bulls of French beef breeds. J. Anim. Sci. 88, 446-454
  • [5] Bhat, F., Morton, D., Mason, L., Bekhit, A. (2018). Role of calpain system in meat tenderness A review. Food Sci. 7: 196–204
  • [6] Bradley, D. G. (2020). Animal domestication in the era of ancient genomics. Nat. Genet. 21: 449–460
  • [7] Bejarano, D., Martínez, R., Manrique, C., Parra, L. M., Martínez Rocha, J. F., Gómez, Y., Gallego, J. (2018). Linkage disequilibrium levels and allele frequency distribution in blanco orejinegro and romosinuano creole cattle using medium density snp chip data. Genet. and Mole. Bio. 41: 426–433
  • [8] Bernatchez, L. (2016). On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes. Journal of Fish Biology, 89, 2519-2556
  • [9] Chen, J., Althagafi, A., and Hoehndorf, R. (2020). Predicting candidate genes from phenotypes, functions, and anatomical site of expression. Bio. Rxiv. 6: 1–7
  • [10] Cuypers, T. D., Rutten, J. P., Hogeweg, P. (2017). Evolution of evaluability and phenotypic plasticity in virtual cells. Evo. Bio. 17: 60-73
  • [11] Casas, E., & Kehrli Jr, M. E. (2016). A review of selected genes with known effects on performance and health of cattle. Frontiers in Veterinary Science, 3, 113
  • [12] Carvalheiro, R., Costilla, R., Neves, H. H. R., Albuquerque, L. G., Moore, S., and Hayes, B. J. (2019). Unraveling genetic sensitivity of beef cattle to environmental variation under tropical conditions. Genet. Sel. Evo. 51: 1–14
  • [13] Carroll, E. L., Bruford, M. W., DeWoody, J. A., Leroy, G., Strand, A., Waits, L., and Wang, J. (2018). Genetic and genomic monitoring with minimally invasive sampling methods. Evol. Appl. 11: 1094–1119
  • [14] Daetwyler, H. D., A. Capitan, H. Pausch, P. Stothard, R. van Binsbergen, R. F. Brondum, X. Liao, A. Djari, S. C. Rodriguez, C. Grohs, D. Esquerre, O. Bouchez, M. Rossignol, C. Klopp, D. Rocha, S. Fritz, A. Egging, P.J. Bowman, D. Coote, A.J. Chamberlain, C. Anderson, C.P. Van Tassell, I. Hulsegge, M.E. Goddard, B. Guldbrandtsen, M.S. Lund, RF. Veerkam, D.A. Boichard, R. Fries and B.J. Hayes. 2014. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat. Genet. 46: 858-865
  • [15] Decker, J. E., McKay, S. D., Rolf, M. M., Kim, J. W., Molina Alcalá, A., Sonstegard, T. S., Taylor, J. F. (2014). Worldwide Patterns of Ancestry, Divergence, and Admixture in Domesticated Cattle. PLoS. Genet. 10: e1004254
  • [16] Dadi Hailu, Tibbo, M., Takahashi, Y., Nomura, K., Hanada, H., Amano, T. (2008). Microsatellite analysis reveals high genetic diversity but low genetic structure in Ethiopian indigenous cattle populations. Anim. Genet. 39: 425-431
  • [17] Denney, D. A., Jameel, M. I., Bemmels, J. B., Rochford, M. E., & Anderson, J. T. (2020). Small spaces, big impacts: contributions of micro-environmental variation to population persistence under climate change. AoB Plants, 12(2), plaa005
  • [18] Espigolan, R., Baldi, F., Boligon, A., Souza, P., Gordo, G.M., Tonussi, L., Cardoso, F., Oliveira, N., Tonhati, H., Sargolzaei, M. (2013). Study of whole genome linkage disequilibrium in Nellore cattle. BMC. Genom. 14: 305
  • [19] Edea Zewdu, Dadi Hailu, Kim, S., Dessie, T., Lee, T., Kim, H., Kim, K. (2013). Genetic diversity, population structure and relationships in indigenous cattle populations of Ethiopia and Korean Hanwoo breeds using SNP markers. Front. Genet. 4: 1–9
  • [20] Emlen, D. J., Marangelo, J., Ball, B., and Cunningham, C. W. (2005). Diversity in the weapons of sexual selection: Horn evolution in the beetle genus Onthophagus (Coleoptera: Scarabaeidae). Evolu. 59:1060–1084
  • [21] FAO. (2019). Breeding strategies for sustainable management of animal genetic resources FAO Animal Production and Health Guidelines. No. 3
  • [22] Fariello, M. I., Servin, B., Tosser-Klopp, G., Rupp, R., Moreno, C., San Cristobal, M., International Sheep Genomics Consortium. (2014). Selection signatures in worldwide sheep populations. PloS One 9: p, e103813
  • [23] Fiems, L.O. (2012). Double muscling in cattle: Genes, husbandry, carcasses and meat. Anim. 2, 472-506
  • [24] Fijarczyk, A., and Babik, W. (2015). Detecting balancing selection in genomes: limits and prospects. Mol. Ecol. 24: 3529-3545
  • [25] Greenbaum, G, Templeton A.R., Zarmi Y, Bar-David S. (2014). Allelic Richness following Population Founding Events—A Stochastic Modeling Framework Incorporating Gene Flow and Genetic Drift. PLoS One 10(3): e0119663
  • [26] Greenwood PL, Cafe LM, McIntyre BL, Geesink GH, Thompson JM, Polkinghorne R, Pethick DW, Robinson DL. Molecular value predictions: associations with beef quality, carcass, production, behavior, and efficiency phenotypes in Brahman cattle. J Anim Sci. 2013 Dec; 91(12): 5912-25. doi: 10.2527/jas.2013-6960
  • [27] Grobet, L., Martin, L.J., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Ménissier, F., Massabanda, J., Fries, R., Hanset, R., and Georges, M. (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Genet. 17, 71-74
  • [28] Groeneveld, L. F., Lenstra, J. A., Eding, H., Toro, M. A., Scherf, B., Pilling, D., Weigend, S. (2010). Genetic diversity in farm animals - A review. Anim. Genet. 41: 6–31
  • [29] Ghoreishifar, S. M., Eriksson, S., Johansson, A. M., Khansefid, M., Moghaddaszadeh-Ahrabi, S., Parna, N., Javanmard, A. (2020). Signatures of selection reveal candidate genes involved in economic traits and cold acclimation in five Swedish cattle breeds. Genet. Sel. Evo. 52: 1–15
  • [30] Gudbjartsson, D.F., Walters, G.B., Thorleifsson, G., Stefansson, H., Halldorsson, B.V., Zusmanovich, P., Sulem, P., Thorlacius, S., Gylfason, A., Steinberg, S. (2008). Many sequence variants affecting diversity of adult animal weight. Nat. Genet. 40: 609–615
  • [31] Gurgul, A., Jasielczuk, I., Ropka-Molik, K., Semik-Gurgul, E., Pawlina-Tyszko, K., Szmatoła, T., Krupiński, J. (2018). A genome-wide detection of selection signatures in conserved and commercial pig breeds maintained in Poland. Genetics, 19: 1-1
  • [32] Hui, T. Y. J., and Burt, A. (2020). Estimating linkage disequilibrium from genotypes under Hardy-Weinberg equilibrium. Genet. 21, 1–11
  • [33] Hagos Berhane, (2017). Ethiopian Cattle Genetic Resource and Unique Characteristics under a Rapidly Changing Production Environment-A Review. IJSR. 6: 1959–1968
  • [34] Hoda MR, Theil G, Mohammed N, Fischer K, Fornara P. The adipocyte-derived hormone leptin has proliferative actions on androgen-resistant prostate cancer cells linking obesity to advanced stages of prostate cancer. J Oncol. 2012; 2012: 280386. doi: 10.1155/2012/280386
  • [35] Hu., Scheben, A., Edwards, D. (2018). Advances in integrating genomics and bioinformatics in the breeding program. Swiz. Agri. 8, 56-69
  • [36] Hoshiba, H., Setoguchi, K., Watanabe, T., Kinoshita, A., and Mizoshita, K. (2013). Comparison of the effects explained by variations in the bovine PLAG1 and NCAPG genes on daily body weight gain, linear skeletal measurements and carcass traits in Japanese Black steers from a progeny testing program. ANIM. SCI. J. 84: 529–534
  • [37] Hanotte, O., Bradley, D. G., Ochieng, J. W., Verjee, Y., Hill, E. W., and Rege, J. E. O. (2002). African pastoralism: Genetic imprints of origins and migrations. Sci. 296: 336–339
  • [38] Hanotte, O., Bradley, D. G., Ochieng, J. W., Verjee, Y., Hill, E. W., and Rege, J. E. O. (2003). African pastoralism: Genetic imprints of origins and migrations. Science, 296: 336–339
  • [39] Habimana, R., Okeno, T. O., Ngeno, K., Mboumba, S., Assami, P., Gbotto, A. A., ... & Yao, N. (2020). Genetic diversity and population structure of indigenous chicken in Rwanda using microsatellite markers. PloS One, 15(4), e0225084
  • [40] Jacobs, G. S., Sluckin, T. J., and Kivisild, T. (2016). Refining the use of linkage disequilibrium as a robust signature of selective sweeps. Genet. 203: 1807–1825
  • [41] Kanungo, S., Wells, K., Tribett, T., El-Gharbawy, A. (2018). Glycogen metabolism and glycogen storage disorders. Tran. Medi. 6, 474–474
  • [42] Weigel, M. (2015). Extended phase graphs: dephasing, RF pulses, and echoes‐pure and simple. Journal of Magnetic Resonance Imaging, 41(2), 266-295
  • [43] Koolmees, P. A., and Lenstra, J. A. (2014). On the history of cattle genetic resources. Diversity, 6(4), 705-750
  • [44] Li, W.F., Li, J.Y., Gao, X., Xu, S.Z., and Yue, W.B. (2013). Association analysis of PRKAG3 gene variants with carcass and meat quality traits in beef cattle. Afri. J. Biot. 11: 1855-1861
  • [45] Li, T., Song, Y., Bao, X. and Zhang, J. (2020). Mediation of miR-34a/miR-449c for Immune Cytokines in Acute Cold/Heat-Stressed Broiler Chicken. Anim. 10: 2160-2168
  • [46] Lee, T., Shin, D.H., Cho, S., Kang, H. S., Kim, S. H., Lee, H.K., Kim, H., and Seo, K.S. (2014). Genome-wide association study of integrated meat quality-related traits of the duroc pig breed. Asia. Aust. J. Anim. Sci. 27: 303-312
  • [47] Liu, B. J., Li, Y. L., Zhang, B. D., and Liu, J. X. (2020). Genome-Wide Discovery of Single-Nucleotide Polymorphisms and Their Application in Population Genetic Studies in the Endangered Japanese Eel (Anguilla japonica). Fron. Sci. 6, 1–11
  • [48] Makina, S. O., Whitacre, L. K., Decker, J. E., Taylor, J. F., MacNeil, M. D., Scholtz, M. M., Maiwashe, A. (2016). Insight into the genetic composition of South African Sanga cattle using SNP data from cattle breeds worldwide. Genet. Selec. Evo. 48, 1–7
  • [49] Mwai, O., Hanotte, O., Kwon, Y., and Cho, S. (2015). - Invited Review - African Indigenous Cattle: Unique Genetic Resources in a Rapidly Changing World. J. Anim. Sci. 28, 911–921
  • [50] Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, O'Connell J, Moore SS, Smith TP, Sonstegard TS, Van Tassell CP. Development and characterization of a high density SNP genotyping assay for cattle. PLoS One 2009; 4(4): e5350. doi: 10.1371/journal.pone.0005350
  • [51] Upadhyay, M. R., Chen, W., Lenstra, J. A., Goderie, C. R. J., MacHugh, D. E., Park, S. D. E., Groenen, M. A. M. (2017). Genetic origin, admixture and population history of aurochs (Bos primigenius) and primitive European cattle. Heredity, 118, 169-176
  • [52] Milan, D., Jeon, J.-T., Looft, C., Amarger, V., Robic, A., Thelander, M., Rogel-Gaillard, C., Paul, S., Iannuccelli, N., and Rask, L. (2000). A mutation in PRKAG3 is associated with excess glycogen content in pig skeletal muscle. Sci. 288: 1248-1251
  • [53] Magalhães AF, de Camargo GM, Fernandes GA Junior, Gordo DG, Tonussi RL, Costa RB, Espigolan R, Silva RM, Bresolin T, de Andrade WB, Takada L, Feitosa FL, Baldi F, Carvalheiro R, Chardulo LA, de Albuquerque LG. Genome-Wide Association Study of Meat Quality Traits in Nellore Cattle. PLoS One 2016 Jun 30; 11(6): e0157845. doi: 10.1371/journal.pone.0157845
  • [54] Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genet. 157: 1819–1829
  • [55] Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E. (2016). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157: 1819–1829
  • [56] Qanbari S. and Simianer H. (2014). Mapping signatures of positive selection in the genome of livestock. Live. Sci. 166: 133-143
  • [57] Pitt, D., Sevane, N., Nicolazzi, E. L., MacHugh, D. E., Park, S. D. E., Colli, L., Orozco-ter Wengel, P. (2019). Domestication of cattle; Evo. Appli. 12: 123–136
  • [58] Pant, S. D., Schenkel, F. S., Verschoor, C. P., and Karrow, N. A. (2012). Use of breed-specific single nucleotide polymorphisms to discriminate between Holstein and Jersey dairy cattle breeds. Anim. Biot. 23, 1–10
  • [59] Page, B.T., Casas, E., Heaton, M.P., Cullen, N.G., Hyndman, D.L., Morris, C.A., Crawford, A.M., Wheeler, T.L., Koohmaraie, M., Keele, J.W., and Smith, T.P.L. (2002). Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J. Anim. Sci. 80: 3077-3085
  • [60] Rivollat, M., Mendisco, F., Pemonge, M. H., Safi, A., Saint-Marc, D., Brémond, A., Deguilloux, M. F. (2015). When the waves of European neolithization met: First paleogenetic evidence from early farmers in the Southern Paris Basin. PloS One 10: 371-521. https://doi.org/10.1371/journal.pone.0125521
  • [61] Ramey, H. R., Decker, J. E., McKay, S. D., Rolf, M. M., Schnabel, R. D., & Taylor, J. F. (2013). Detection of selective sweeps in cattle using genome-wide SNP data. BMC Genomics, 14(1), 1-18
  • [62] Rincón, A. D., Prevosti, F. J., and Parra, G. E. (2011). New saber-toothed cat records (Felidae: Machairodontinae) for the Pleistocene of Venezuela, and the Great American Biotic Interchange. J. Verte. Pale. 31: 468–478
  • [63] Rodríguez-Peña, R. A., Johnson, R. L., Johnson, L. A., Anderson, C. D., Ricks, N. J., Farley, K. M., Stevens, M. R. (2018). Investigating the genetic diversity and differentiation patterns in the Penstemon scariosus species complex under different sample sizes using AFLPs and SSRs. Genet. 19: 1335–1348
  • [64] Rothammer, S., Seichter, D., Förster, M., Medugorac, I. (2013). A genome-wide scan for signatures of differential artificial selection in ten cattle breeds. Genomics, 14: 1-17.
  • [65] Rauw, W. M., and Gomez-Raya, L. (2015). Genotype by environment interaction and breeding for robustness in livestock. Fron. Genet. 6: 1–15
  • [66] Santiago, G., Siqueira, F., Cardoso, F., Regitano, L., Ventura, R., Sollero, B., Souza, M., Mokry, F., Ferreira, A., and Torres, R. (2017). Genome wide association study for production and meat quality traits in Canchim beef cattle. J. Anim .Sci. 95: 3381-3390
  • [67] Schmid, M., and Guillaume, F. (2017). The role of phenotypic plasticity on population differentiation. Here. 119: 214–225
  • [68] Sejian, V., Naqvi, S. M. K., Ezeji, T., Lakritz, J., and Lal, R. (2013). Environmental stress and amelioration in livestock production. In Environmental Stress and Amelioration in Livestock Production. Spri. 13: 322-325
  • [69] Tarekegn Getenet Mekuriaw, Ji, X., Bai, X., Liu, B., Zhang, W., Birungi, J., Tesfaye Kassahun, (2018). Variations in mitochondrial cytochrome b region among Ethiopian indigenous cattle populations assert Bos taurus maternal origin and historical dynamics. AJAS 31: 1393–1400
  • [70] Theunissen, B., and Lenstra, J. A. (2015). Conservation of cattle genetic resources: The role of breeds Conservation of cattle genetic resources: the role of breeds. JAS. 153: 152–162
  • [71] Utsunomiya Y.T., Perez O’Brien A.M., Sonstegard T.S., Solkner J. and Garcia J.F. (2015). Genomic data as the “hitchhiker’s guide” to cattle adaptation: tracking the milestones of past selection in the bovine genome. Front. Genet. 6: 36-42
  • [72] Vitti J.J., Grossman S.R. and Sabeti P.C. (2013). Detecting natural selection in genomic data. Genet. 47: 97-120
  • [73] Winter, A., Krämer, W., Werner, F.A.O., Kollers, S., Kata, S., Durstewitz, G., Buitkamp, J., Womack, J.E., Thaller, G., and Fries, R. (2002). Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl CoA: diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Pnsus. 99: 9300-9305
  • [74] Xing, T., Gao, F., Tume, R. K., Zhou, G., Xu, X. (2019). Stress Effects on Meat Quality. Mech. Pers. 12: 541-4337
  • [75] Yen, C.L.E., Stone, S.J., Koliwad, S., Harris, C., and Farese, R.V. (2008). Thematic review series: glycerol lipids. DGAT enzymes and triacylglycerol biosynthesis. J. Rese. 49: 2283-2301
  • [76] Yuan, Z., Li, J., Li, J., Gao, X., Gao, H., and Xu, S. (2013). Effects of DGAT1 gene on meat and carcass fatness quality in Chinese commercial cattle. Mole. Bio. Repo. 40: 1947-1954
  • [77] Zwane, A. A., Maiwashe, A., Makgahlela, M. L., Choudhury, A., Taylor, J. F., and van Marle-Koster, E. (2016). Genome-wide identification of breed-informative single-nucleotide polymorphisms in three South African indigenous cattle breeds. S. Afri. J. Anim. Sci. 46: 302–312
  • [78] Zhao, F., McParland, S., Kearney, F., Du, L., and Berry, D. P. (2015). Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genet. Sele. Evo. 47: 1–12
  • [79] Zhou, G., Dudgeon, C., Li, M., Cao, Y., Zhang, L., and Jin, H. (2010). Molecular cloning of the HGD gene and association of SNPs with meat quality traits in Chinese red cattle. Mole. Bio. 37: 603-611

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-b77653a1-553a-4a74-8e77-3a0d4e52c391
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.