Preferences help
enabled [disable] Abstract
Number of results
2018 | 91 | 73-85
Article title

Effect of Time Immersion of Thiourea on Structural and Optical Properties of CdS Deposited by SILAR

Title variants
Languages of publication
Successive ionic layer adsorption and reaction (SILAR) technique was used to prepare (CdS) thin films on glass substrate, by changing the immersion time in thiourea solution. XRD patterns proved that the as deposited thin films were polycrystalline structure with an average crystallite size ranging from 14.1 nm to 5.6 nm depending on immersion time. The EDX confirm the existence of CdS. Scanning electron microscopy reveals that the deposited films have a nanorod structure.Atomic force microscopy has shown that the values of average roughness and the root mean square roughness increase upon increasing the immersion time. The transmittance spectra reveal that as the immersion time increase, the value of transmittance decrease.
Physical description
  • Department of Applied Sciences, University of Technology, Baghdad, Iraq
  • College of Education, Mustansiryah University, Baghdad, Iraq
  • College of Education, Mustansiryah University, Baghdad, Iraq
  • [1] K.J. Rajeshwar, Appl Electrochem 15 (1985) 1.
  • [2] G.J. McCarthy, J.J. Rhyne (Eds.), The Rare Earths in Modern Science and Technology, Plenum Press, New York, 1978.
  • [3] R. Suryanarayanan, Phys. Status Solidi B 85 (1978) 9.
  • [4] B. Ullrich, D. M. Bagnall, H. Sakai, and Y. Segawa, Solide State Commu. 109, 757 (1999).
  • [5] M. Avinor and G. Meijer, J. Chem. Phys. 32, 1456 (1960).
  • [6] Maruyama T, and Kitmura R., Transformation of the wave length of the light incident upon CdS/CdTe solar cells, Sol. Energy Mater. Sol. Cells, 69, 61 (2001)
  • [7] Gerardo Larramona G., Choné C., Jacob A., Sakakura D.B., Daniel Péré D., Cieren X., Nagino M. and Bayón R., Nanostructured Photovoltaic Cell of the Type Titanium Dioxide, Cadmium Sulfide Thin Coating, and Copper Thiocyanate Showing High Quantum Efficiency, Chem. Mater. 18(6), 1688–1696 (2006)
  • [8] Wang Y., Ramanathan S., Fan Q., Yun Q., Morkoc H., and Bandyopadhyay S., Electric Field Modulation of Infrared Absorption at Room Temperature in Electrochemically Self Assembled Quantum Dots, J. Nanosci. Nanotechnol. 6, 2077–2080 (2006)
  • [9] Klevin D.I., Roth R., Lim A.K.I. and Alivisators A.P., A single electrontransistor made from a cadmium selenide nanocrystal, Nature, 389, 699-701 (1997)
  • [10] Kolvin V.I., Schlamp M.C., Alivisators A.P., Light emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, Nature, 370, 354-357 (1994)
  • [11] Alivisators A.P., Semiconductor clusters, nanocrystals and quantum dots, Science, 271, 933-937 (1996)
  • [12] Cao G., Nanostructure and nanomaterials synthesis, properties and applications, Imperial College Press, 349 (2004)
  • [13] Senthil K., Magalraj D. and Narayandas S.K., Appl. Surf. Sci. 476, 169-170 (2001)
  • [14] Henglein A., Small partical research; physicochemical properties of extremely small colloidal metal and semiconductor partials, Chem. Rev. 89, 1861-1873 (1989)
  • [15] Fukuka A., Sakamoto Y., Guan S., Ingaki S., Sugimoto N., Fukushima Y., Hirahara K., Lijima S. and KIkawa M., Novel templating synthesis of neckless-shaped mono and bimetallic nanowire in hybrid organic-inorganic mesoporous material, J. Amer. Chem. Soc. 123, 3373-3374 (2001)
  • [16] G. Stanly, Appl. Solid-State Sci. 5, 251 (1975).
  • [17] M. Savelli and J. Bougnot, Solar Energy Conversion, Top. Appl. Phys. 31, (1979), 213.
  • [18] H. Uda, S. Ikegami, and H. Sonomura, Jpn. J. Appl. Phys. 29, 30 (1990).
  • [19] J. Kaur, D. K. Paudya, and K. L. Chopra, J. Electrchem. Soc. 127, 943 (1980).
  • [20] J. T. Mullis and T. Tagushi, J. Crys. Growth, 117, 432 (1992).
  • [21] K. A. Dhese, J. E. Nicholls, W. E. Hagston, P. I. Wrigth, B. Cockayne. and J. J. Davies, J. Crys. Growth, 138, 140 (1994).
  • [22] Y. F. Nicolau, Appl. Surf. Sci. 22/23, 1061 (1985).
  • [23] M. P. Valkonen, T. Kannianinen, S. Lindoros. M. Leskela, and E. Rauhala, Appl. Phys. Sci. 115, 386 (1997).
  • [24] Y. F. Nicolau, M. Dupy, and M. Brunel. J. Electrochem. Soc. 137, 2915 (1990).
  • [25] S. Lindoros, T. Kannianinen, M. Leskela, and E. Rauhala, Thin Solid Films, 263, 79 (1995).
  • [26] L. L. Pan, G. Y. Li, and J. S. Lian, Structural, optical and electrical properties of cerium and gadolinium doped CdO thin films, Appl. Surf. Sci. vol. 274, pp. 365–370, Jun. 2013.
  • [27] B. J. Zheng, J. S. Lian, L. Zhao, and Q. Jiang, Optical and electrical properties of In-doped CdO thin films fabricated by pulse laser deposition, Appl. Surf. Sci. vol. 256, pp. 2910–2914, 2010.
  • [28] U. M. Jadhav, S. N. Patel, and R. S. Patil, Room Temperature Deposition of Nanocrystalline CdS Thin Film by Successive Ionic Layer Adsorption and Reaction (SILAR) Method, Res. J. Mater. Sci., vol. 1, no. 1, pp. 21–25, 2013.
  • [29] J. Barman, J. P. Borah, and K. C. Sarma, Effect of pH variation on size and structure of CdS nanocrystalline thin films. Chalcogenide Lett., vol. 5, no. 11, pp. 265–271, 2008.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.