

World Scientific News

An International Scientific Journal

WSN 113 (2018) 130-137

EISSN 2392-219

C-compactness Via Grills

M. K. Gupta^a and Monika Gaur^b

Department of Mathematics, Chaudhary Charan Singh University Meerut, U.P., India

a,bE-mail address: mkgupta2002@hotmail.com, monikagaur.ccsu@gmail.com

ABSTRACT

In the present paper, we study C-compactness with respect to a grill, which simultaneously generalizes C-compactness and G-compactness and term it as C(G)-compact space. Several of its properties are investigated and effects of various kinds of functions on them are studied.

Keywords: Grill, G-compact, C-compact, Quasi-H-closed

1. INTRODUCTION

In the present paper, we consider a topological space equipped with a grill, a brilliant notion that has been initiated by Choquet [1]. A grill G on a topological space X is a collection of subsets of X satisfying the following conditions: $(1) \phi \notin G$, $(2) A \in G$ and $A \subseteq B \Rightarrow B \in G$, and $(3) A \notin G$ and $B \notin G \Rightarrow A \cup B \notin G$. $G(\{\phi\}) := P(X) - \{\phi\}$ and ϕ are trivial examples of grills. Some useful grills are (i) G_{∞} , the grill of all infinite subsets of G_{∞} , the grill of all uncountable subsets of G_{∞} , the grill of all uncountable subsets of G_{∞} , we denote the grill $G_{\infty} \cap A : G \notin G$ by $G_{\infty} \cap A \cap G$.

A topological space (X, τ) with a grill G on X will be denoted by (X, τ, G) . Roy and Mukherjee [6] defined a topology obtained as an associated structure on a topological space (X, τ) induced by a grill on X. According to them, for $A \in P(X)$, $\Phi_G(A, \tau)$ or $\Phi_G(A)$ or simply

 $\Phi(A)$ is the set $\{x \in X : A \cap U \in \mathcal{G}\}$, for every open neighborhood U of $x\}$. We can easily check that (i) for the grill ϕ , $\Phi(A)$ is ϕ (ii) for the grill $\mathcal{G}(\{\phi\})$, $\Phi(A)$ is $\operatorname{cl}(A)$,(iii) for the grill \mathcal{G}_{∞} , $\Phi(A)$ is the set of all ω-accumulation points of A (iv) for the grill \mathcal{G}_{∞} , $\Phi(A)$ is the set of all condensation points of A. Consider the operator $\Psi: P(X) \to P(X)$, where $\Psi(A) = A \cup \Phi(A)$, then Ψ is a Kuratowski closure operator and hence induces a topology on X, strictly finer than τ , in general. Also $\tau_{\mathcal{G}} = \{U \subseteq X : \Psi(X - U) = X - U\}$. We can easily check, $\tau_{\mathcal{G}}(\phi) = \mathbb{C}$ the discrete topology and $\tau_{\mathcal{G}}(\mathcal{G}(\{\phi\})) = \tau$. For a grill space (X, τ, \mathcal{G}) , the $\mathcal{B} = \{U - A : U \in \tau \text{ and } A \notin \mathcal{G}\}$ is the base for the topology $\tau_{\mathcal{G}}$ on X, finer than τ . Gupta and Noiri [3] defined C-compactness in an ideal topological space. Here we will define and explore C-compactness in a topological space by using the notion of grills. Some interesting illustrations of $\tau_{\mathcal{G}}$ are as follows:

- (1) If τ is the topology generated by the partition $\{\{2n-1,2n\}: n \in N\}$ on the set N of natural numbers, then τ_G for G_∞ is the discrete topology.
- (2) If τ is the indiscrete topology on a set X, then τ_G for G_∞ is the cofinite topology on X.
- (3) For any topological space (X, τ) , τ_G for G_{σ} is the τ^{α} topology of Njastad [5].

We recall that a subset A of a grill space (X, τ, G) is said to be G-compact [7] if for every cover U of A by elements of τ , there exists a finite subfamily $\{U_1, U_2, U_3, ..., U_n\}$ such that $A - \bigcup_{i=1}^n U_i \notin G$. The grill space (X, τ, G) is said to be G-compact if X is G-compact.

It is clear that (X, τ) is compact if and only if $(X, \tau, G(\{\phi\}))$ is $G(\{\phi\})$ -compact. If (X, τ) is compact then (X, τ, G) is G-compact for any grill G.

2. QUASI-H-CLOSED WITH RESPECT TO A GRILL SPACE

A topological space (X, τ) is said to be Quasi-H-closed or simply QHC, if for every open cover U of X, there exists a finite subfamily $\{U_1, U_2, U_3, ..., U_n\}$ such that $X = \bigcup_{i=1}^n \operatorname{cl}(U_i)$. In this section, we define quasi-H-closedness via grills and study some of its properties.

Definition 2.1. Let (X, τ) be a topological space and G be a grill on X. X is quasi-H-closed with respect to G or just (G)QHC if for every open cover U of X, there exists a finite subfamily $\{U_1, U_2, U_3, ..., U_n\}$ of U such that $X - \bigcup_{i=1}^n \operatorname{cl}(U_i) \notin G$. Such a subfamily is said to be proximate subcover modulo G or just G0 proximate subcover.

Definition 2.2. A grill G of subsets of a topological space (X, τ) is said to be connon-dense if the complement of each of its members is non-dense.

Theorem 2.3. For a space (X, τ) , the following are equivalent:

- (a) (X, τ) is quasi-H-closed.
- (b) (X, τ) is (ϕ) QHC.
- (c) (X, τ) is (G_{∞}) QHC.

- (d) (X, τ) is (G_{σ}) QHC.
- (e) (X, τ) is (G) QHC for every co non-dense grill G.

Proof: It is easy to check from the above discussion.

A family \mathcal{F} of subsets of X is said to have the *finite – intersection property with respect* to a grill \mathcal{G} on X or just (\mathcal{G}) FIP if the intersection of finite subfamily of \mathcal{F} is a member of \mathcal{G} . Recall that a subset in a space is called regular open if it is the interior of its own closure. The complement of a regular open set is called regular closed.

Theorem 2.4. For a space (X, τ) and a grill G on X, the following are equivalent:

- (a) (X, τ) is (G) QHC;
- (b) For each family \mathcal{F} of closed sets having empty intersection, there is a finite subfamily $\{F_1, F_2, F_3, ..., F_n\}$ such that $\bigcap_{i=1}^n \operatorname{int}(F_i) \notin G$;
- (c) For each family \mathcal{F} of closed sets such that $\{\text{int}(F): F \in \mathcal{F}\}$ has (G)FIP, one has $\cap \{F: F \in \mathcal{F}\} \neq \emptyset$;
- (d) Every regular open cover has a (G) proximate cover;
- (e) For each family \mathcal{F} of non empty regular closed sets having empty intersection, there is a finite subfamily $\{F_1, F_2, F_3, ..., F_n\}$ such that $\bigcap_{i=1}^n \operatorname{int}(F_i) \notin \mathcal{G}$;
- (f) For each collection \mathcal{F} of non empty regular closed sets such that $\{\text{int}(F): F \in \mathcal{F}\}$ has (\mathcal{G}) FIP, one has $\cap \{F: F \in \mathcal{F}\} \neq \emptyset$;
- (g) For each open filter base \mathcal{B} on G, $\cap \{\operatorname{cl}(B) : B \in \mathcal{B}\} \neq \emptyset$;
- (h) Every open ultra filter on G converges.

3. C-COMPACTNESS WITH RESPECT TO A GRILL

In this section, we generalize the concept of C-compactness of Viglino [9] and compactness via grills of Roy and Mukherjee [7].

Herrington and Long [4] characterized C-compact spaces. A space (X, τ) is said to be C-compact if for each closed set A and each τ -open covering U of A, there exists a finite subfamily $\{U_1, U_2, U_3, ..., U_n\}$ such that $A \subset \bigcup_{i=1}^n \operatorname{cl}(U_i)$.

Definition 3.1. Let (X, τ) be a topological space and G be a grill on X. (X, τ) is said to be C-compact with respect to grill or just C(G)-compact if for every τ -open covering U of A, there exists a finite subfamily $\{U_1, U_2, U_3, ..., U_n\}$ such that $A - \bigcup_{i=1}^n \operatorname{cl}(U_i) \notin G$.

Every C-compact space (X, τ) is C(G)-compact for any grill G on X. It is clear from the following example that the converse of it is not true.

Example 3.2. Consider Example 3. of [8]. Let G be a grill of all supersets of X-A. Then (X, τ, G) is C(G)-compact, but X is not C-compact.

Theorem 3.3. For a space (X, τ) , the following are equivalent:

- (a) (X, τ) is C-compact.
- (b) (X, τ) is $C(\phi)$ -compact.
- (c) (X, τ) is $C(G_{\infty})$ -compact.

Theorem 3.4. If a space is G-compact then it is C(G)-compact.

Proof: Let X be a G-compact space, A a closed subset of X and $\{V_\alpha\}_{\alpha\in\Lambda}$ an open cover of A. Then $(X-A)\cup\bigcup_{\alpha\in\Lambda}(V_\alpha)$ is an open cover of X. Since X is G-compact, therefore there exists finite $\Lambda_0\subseteq\Lambda$ such that $X-\{X-A\}\cup\bigcup_{\alpha\in\Lambda_0}(V_\alpha)\}\not\in G$. This implies $A-\bigcup_{\alpha\in\Lambda_0}(V_\alpha)\not\in G$. Since $V_\alpha\subset\operatorname{cl}(V_\alpha)$, therefore $A-\bigcup_{\alpha\in\Lambda_0}\operatorname{cl}(V_\alpha)\not\in G$, implying that X is $\operatorname{C}(G)$ -compact.

In view of following example it is clear that the converse of this theorem, in general, is not true.

Example 3.5. Consider Example 3.3 of [3]. By Theorem 3.3, X is $C(G_{\infty})$ -compact, but not (G_{∞}) -compact.

Theorem 3.6. Let (X, τ) be a space and G be a grill on X. Then the following are equivalent:

- (a) (X, τ) is C(G)-compact;
- **(b)** For each closed subset A of X and each family \mathcal{F} of closed subsets of X such that $\bigcap \{F \cap A : F \in \mathcal{F}\} = \emptyset$, there is a finite subfamily $\{F_1, F_2, F_3, ..., F_n\}$ such that $\bigcap_{i=1}^n (\operatorname{int}(F_i)) \cap A \notin \mathcal{G}$;
- (c) For each closed set A and each family \mathcal{F} of closed subsets of X such that $\{\text{int}(F) \cap A : F \in \mathcal{F}\}$ has (G)FIP, one has $\bigcap \{F \cap A : F \in \mathcal{F}\} \neq \emptyset$;
- (d) For each closed set A and each regular open cover \cup of A, there exists a finite subcollection $\{U_1, U_2, U_3, ..., U_n\}$ such that $A \bigcup_{i=1}^n \operatorname{cl}(U_i) \notin G$.
- (e) For each closed set A and each family \mathcal{F} of regular closed sets such that $\bigcap \{F \cap A : F \in \mathcal{F}\}= \emptyset$, there is a finite subfamily $\{F_1,F_2,F_3,...,F_n\}$ such that $\bigcap_{i=1}^n (\text{int}(F_i)) \cap A \notin \mathcal{G}$;
- (f) For each closed set A and each family \mathcal{F} of regular closed sets such that $\{\text{int}(F) \cap A : F \in \mathcal{F}\}\$ has (G)FIP, one has $\bigcap \{F \cap A : F \in \mathcal{F}\} \neq \emptyset$;
- (g) For each closed set A, each open cover U of X-A and each open neighborhood V of A, there exists a finite subfamily $\{U_1, U_2, U_3, ..., U_n\}$ of U such that $X (V \cup (\bigcup_{i=1}^n \operatorname{cl}(U_i))) \notin G$.
- (h) For each closed set A and each open filter base \mathcal{B} on X such that $\{B \cap A : B \in \mathcal{B}\} \subset \mathcal{G}$, one has $\bigcap \{c \mid (B) : B \in \mathcal{B}\} \cap A \neq \emptyset$.

Proof: (a) \Rightarrow (b) Let (X, τ) be C(G)-compact, A a closed subset, and F a family of closed subsets with $\bigcap \{F \cap A : F \in F\} = \emptyset$. Then $\{X - F : F \in F\}$ is an open cover of A and hence

admits a finite subfamily $\{X - F_i : i = 1, 2, ... n\}$ such that $A - \bigcup_{i=1}^n \text{cl}(X - F_i) \notin G$. This set not in G is easily seen to be $\{\bigcap_{i=1}^n (\text{int}(F_i)) \cap A\}$.

- $(b) \Rightarrow (c)$ Easy.
- (c) \Rightarrow (a) Let A be a closed subset. Let U be an open cover of A with the property that for no finite subfamily $\{U_1, U_2, U_3, ..., U_n\}$ of U, one has $A \bigcup_{i=1}^n \operatorname{cl}(U_i) \notin G$. Then $\{X U : U \in U\}$ is a family of closed sets .Since $\bigcap_{i=1}^n \{(X \operatorname{cl}(U_i))\} \cap A = \bigcap_{i=1}^n \{A \operatorname{cl}(U_i)\} = A \bigcup_{i=1}^n \operatorname{cl}(U_i)$, the family $\{\operatorname{int}(X U) \cap A : U \in U\}$ has (G)FIP. By the hypothesis $\bigcap \{(X U) \cap A : U \in U\} \neq \emptyset$ $\Rightarrow \bigcap \{A U : U \in U\} \neq \emptyset$ $\Rightarrow A \bigcup \{U : U \in U\} \neq \emptyset$ is not a cover of A, a contradiction.
- (d) \Rightarrow (a) Let A be a closed subset of X and U be an open cover of A. Then $\{\operatorname{int}(\operatorname{cl}(U)): U \in U\}$ is a regular open cover of A. Let $\{\operatorname{int}(\operatorname{cl}(U_i)): i=1,2,...,n\}$ be a finite subfamily such that $A-\bigcup_{i=1}^n\operatorname{cl}(\operatorname{int}(\operatorname{cl}(U_i))) \notin G$. Since U_i is open, and for each open set U we have $\operatorname{cl}(\operatorname{int}(\operatorname{cl}(U))) \in \operatorname{cl}(U)$. We have $A-\bigcup_{i=1}^n\operatorname{cl}(U_i) \notin G$. Hence X is $\operatorname{C}(G)$ -compact.
- $(a) \Rightarrow (d)$ This is obvious.
- $(\mathbf{d}) \Rightarrow (\mathbf{e}) \Rightarrow (\mathbf{f}) \Rightarrow (\mathbf{d})$ are parallel to (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a) respectively.
- (a) \Rightarrow (g) Let A be a closed set, V an open neighborhood of A, and V an open cover of X-A. Since $X V \subset X A$, V is an open cover of X-V. Let $\{U_1, U_2, U_3, ..., U_n\}$ be a finite collection of V, such that $(X V) \bigcup_{i=1}^n \operatorname{cl}(U_i) \notin G$. Since $(X V) \bigcup_{i=1}^n \operatorname{cl}(U_i) = X (V \cup (\bigcup_{i=1}^n \operatorname{cl}(U_i)))$ This shows $(X (V \cup (\bigcup_{i=1}^n \operatorname{cl}(U_i))) \notin G$.
- $(\mathbf{g}) \Rightarrow (\mathbf{a})$ Let A be a closed subset of X and U an open covering of A. If H denotes the union of members of U, then F = X H is a closed set and X A is an open neighborhood of F. Also U is an open cover of X F. By hypothesis, there is a finite sub-collection $\{U_1, U_2, U_3, ..., U_n\}$ of U, such that $X ((X A) \cup (\bigcup_{i=1}^n \operatorname{cl}(U_i))) \notin G$. However, this set not in G is nothing but $A \bigcup_{i=1}^n \operatorname{cl}(U_i)$.
- (a) \Rightarrow (h) Suppose A is a closed set and \mathcal{B} is an open filter base on X with $\{B \cap A : B \in \mathcal{B}\} \subset \mathcal{G}$. Suppose, if possible, $\bigcap \{cl(B) : B \in \mathcal{B}\} \cap A = \emptyset$. Then $\{X cl(B) : B \in \mathcal{B}\}$ is an open cover of A. By the hypothesis, there exists a finite subfamily $\{X cl(B_i) : i = 1,2,3,...,n\}$ such that $A \bigcup_{i=1}^n cl(X cl(B_i)) \notin \mathcal{G}$. However, this set is $A \cap (\bigcap_{i=1}^n int(cl(B_i)))$ and $A \cap (\bigcap_{i=1}^n B_i)$ is a subset of it. Therefore, $A \cap (\bigcap_{i=1}^n B_i) \notin \mathcal{G}$. Since \mathcal{B} is a filter base, we have a $B \in \mathcal{B}$ such that $B \subset \bigcap_{i=1}^n B_i$. But then $A \cap B \notin \mathcal{G}$ which contradicts the fact that $\{B \cap A : B \in \mathcal{B}\} \subset \mathcal{G}$.
- (h) \Rightarrow (a) Suppose that (X, τ) is not C(G)-compact. Then there exist a closed subset A of X and an open cover U of A such that for any finite subfamily $\{U_1, U_2, U_3, ..., U_n\}$ of U, we have $A \bigcup_{i=1}^n \operatorname{cl}(U_i) \in G$. We may assume that U is closed under finite unions. Then the family $\mathcal{B} = \{X \in A \mid U \in G\}$

 $-\operatorname{cl}(U): U \in U$ } is an open filter base on X such that $\{B \cap A: B \in \mathcal{B}\} \subset \mathcal{G}$. So, by the hypothesis, $\cap \{\operatorname{cl}(X - \operatorname{cl}(U)): U \in U\} \cap A \neq \emptyset$. Let x be a point in the intersection. Then $x \in A$ and $x \in \operatorname{cl}(X - \operatorname{cl}(U)) = X - \operatorname{int}(\operatorname{cl}(U)) \subset X - U$ for each $U \in U$. But this contradicts the fact that U is a cover of A. Hence, (X, τ) is $C(\mathcal{G})$ -compact.

Definition 3.7. A filter base \mathcal{B} is said to be (\mathcal{G}) adherent convergent if for every neighborhood N of the adherent set of \mathcal{B} , there exists an element $B \in \mathcal{B}$ such that $(X - N) \cap B \notin \mathcal{G}$.

Theorem 3.8. A space (X, τ) is C(G)-compact if and only if every open filter base on G is (G) adherent convergent.

Proof: Let (X, τ) be C(G)-compact and let \mathcal{B} be an open filter base on G with A as its adherent set. Let G be an open neighborhood of A. Then $A = \bigcap \{ \operatorname{cl}(B) : B \in \mathcal{B} \}$, $A \subset G$, and X- G is closed. Now $\{X - \operatorname{cl}(B) : B \in \mathcal{B}\}$ is an open cover of X-G and so by the hypothesis, it admits a finite subfamily $\{X - \operatorname{cl}(B_i) : i = 1, 2, 3, ..., n\}$ such that $(X - G) - \bigcup_{i=1}^n \operatorname{cl}(X - \operatorname{cl}(B_i)) \notin G$. But this implies $(X - G) \cap (\bigcap_{i=1}^n \operatorname{int}(\operatorname{cl}(B_i))) \notin G$. However $B_i \subset \operatorname{int}(\operatorname{cl}(B_i))$ implies $(X - G) \cap (\bigcap_{i=1}^n (B_i)) \notin G$. Since \mathcal{B} is a filter base and $B_i \in \mathcal{B}$, there is a $B \in \mathcal{B}$ such that $B \subset \bigcap_{i=1}^n B_i$. But then $(X - G) \cap B \notin G$ is required.

Conversely, let (X, τ) be not C(G)-compact, and A be a closed set, and U be an open cover of A such that for no finite subfamily $\{U_1, U_2, U_3, ..., U_n\}$ of U, one has $A - \bigcup_{i=1}^n \operatorname{cl}(U_i) \notin G$. Without loss of generality, we may assume that U is closed for finite unions. Therefore, $\mathcal{B} = \{X - \operatorname{cl}(U) : U \in U\}$ becomes an open filter base on G. If X is an adherent point of G, that is, if $X \in \bigcap \{\operatorname{cl}(X - \operatorname{cl}(U)) : U \in U\} = X - \bigcup \{\operatorname{int}(\operatorname{cl}(U)) : U \in U\}$, then $X \notin A$, because U is an open cover of A and for $U \in U$, $U \subset \operatorname{int}(\operatorname{cl}(U))$. Therefore, the adherent set of G is contained in X - A, which is an open set. By the hypothesis, there exists an element $B \in G$ such that $(X - (X - A)) \cap B \notin G$, that is, $A \cap B \notin G$, that is $A \cap (X - \operatorname{cl}(U)) \notin G$ some $U \in U$. This however contradicts our assumption. This completes the proof.

4. C(G)-COMPACT SPACES AND FUNCTIONS

Definition 4.1. A function $f:(X, \tau) \to (Y, \varsigma)$ is said to be θ -continuous [2] at a point $x \in X$ if for every open set V of Y containing f(x), there exists an open set U of X containing x such that $f(\operatorname{cl}(U)) \subset \operatorname{cl}(V)$.

Theorem 4.2. Let $f: (X, \tau, G) \to (Y, \zeta, \mathcal{H})$ be a continuous surjection, $(X, \tau, G) \subset (G)$ -compact, and $f(G) \subseteq \mathcal{H}$. Then (Y, ζ, \mathcal{H}) is $C(\mathcal{H})$ -compact.

Proof: Let *A* be a closed subset of (Y, ζ) and \mathcal{V} any open cover of *A* in *Y*. By continuity of *f*, $f^{-1}(A)$ is an closed subset of *X* and is such that $\{f^{-1}(V): V \in \mathcal{V}\}$ is a cover of $f^{-1}(A)$ by open

World Scientific News 113 (2018) 130-137

sets in X. Hence, by the C(G)-compactness of X, there exists a finite subcollection $\{f^{-1}(V_i): i=1,2,3,...,n\}$ such that $f^{-1}(A)-\bigcup_{i=1}^n\operatorname{cl}(f^{-1}(V_i))\not\in G$. Since f is continuous, $\operatorname{cl}(f^{-1}(B))\subset f^{-1}(\operatorname{cl}(B))$ for every subset B of Y. Hence we have $f^{-1}(A)-\bigcup_{i=1}^n(f^{-1}\operatorname{cl}(V_i))=f^{-1}(A-\bigcup_{i=1}^n\operatorname{cl}(V_i))\not\in G$. Since f is surjective, $A-\bigcup_{i=1}^n\operatorname{cl}(V_i)\not\in f$ (G) $\subseteq \mathcal{H}$. Hence, Y is $C(\mathcal{H})$ -compact.

Theorem 4.3. Let $f:(X, \tau, G) \to (Y, \zeta, \mathcal{H})$ be a θ -continuous function, (X, τ, G) C(G)-compact, (Y, ζ) Hausdorff, and $f(G) \subset \mathcal{H}$. Then f(A) is $\zeta_{\mathcal{H}}$ -closed.

Proof: Let A be any closed set in X and $a \notin f(A)$. For each $x \in A$, there exists a ς -open set V_y containing y = f(x) such that $a \notin \operatorname{cl}(V_y)$. Now because f is θ -continuous, there exists an open set U_x containing x such that $f(\operatorname{cl}(U_x)) \subseteq \operatorname{cl}(V_y)$. Now, the family $\{U_x : x \in A\}$ is an open cover of A. Therefore, there exists a finite subfamily $\{U_{x_i} : i = 1, 2, 3, ..., n\}$ such that $A - \bigcup_{i=1}^n \operatorname{cl}(U_{x_i}) \notin G$. But then $f(A - \bigcup_{i=1}^n \operatorname{cl}(U_{x_i})) \notin f(G) \subseteq \mathcal{H}$, that is, $f(A) - f(\bigcup_{i=1}^n \operatorname{cl}(U_{x_i})) \notin f(G) \subseteq \mathcal{H}$ because f(G) is also a grill. Hence, $f(A) - \bigcup_{i=1}^n \operatorname{cl}(V_{y_i}) \notin f(G) \subseteq \mathcal{H}$. Now $a \notin \operatorname{cl}(V_{y_i})$ for any i implies that $a \in Y - \bigcup_{i=1}^n \operatorname{cl}(V_{y_i})$ which is open in (Y, ς) . That is $Y - \bigcup_{i=1}^n \operatorname{cl}(V_{y_i}) \notin f(G) \subseteq \mathcal{H}$. Hence, $a \notin \Phi_{\mathcal{H}}(f(A), \varsigma)$. Thus $\Phi_{\mathcal{H}}(f(A), \varsigma) \subset f(A)$. This implies f(A) is $\varsigma_{\mathcal{H}}$ -closed.

References

- [1] G. Choquet. Sur les notions de filtre et de grille, C. R. Acad. Sci. Paris, 224 (1947), 171-173.
- [2] S. V. Fomin. Extensions of topological spaces, Ann. of Math. (2) 44 (1943), 471-480.
- [3] M. K. Gupta and T. Noiri, C-compactness modulo an ideal, *Int. J. Math. Math. Sci.* 2006 (2006), 1-12. DOI: 10.1155/JJMMS/2006/78135.
- [4] L. L. Herrington and P. E. Long, Characterizations of C-compact spaces, *Proc. Amer. Math. Soc.* 52 (1975) 417-426.
- [5] O. Njastad. On some classes of nearly open sets, *Pacific J. Math.* 15 (1965), 961-970.
- [6] B. Roy and M. N. Mukherjee. On a typical topology induced by a grill, *Soochow J. Math.* 33(4) (2007) 771-786.
- [7] B. Roy and M. N. Mukherjee. On a type of compactness via grills, *Mat. Vesnik* 59(3) (2007) 113-120.
- [8] S. Sakai, A note on C-compact spaces, *Proc. Japan Acad.* 46 (1970) 917-920.

World Scientific News 113 (2018) 130-137

[9] G. Viglino, C-compact spaces, Duke Math. J. 36 (1969) 761-764.