Journal

Article title

Authors

Content

Title variants

Languages of publication

Abstracts

Discipline

Publisher

Journal

Year

Volume

Pages

1-34

Physical description

Contributors

author

- Department of Mechanical Engineering, University of Lagos, Lagos, Nigeria

References

- [1] M. G. Sobamowo. On the extension of Sarrus’ rule to n×n (n > 3) matrices: Development of new method for the computation of the determinant of 4×4 matrix. International Journal of Engineering Mathematics (2016) 1-14. https://doi.org/10.1155/2016/9382739
- [2] O. Rezaifar and M. Rezaee. A new approach for finding the determinant of matrices. Applied Mathematics and Computation 188 (2007) 1445-1454.
- [3] A. A. M. Ahmed and K. L. Bondar. Modern Method to Compute the Determinants of Matrices of Order 3. Journal of Informatics and Mathematical Sciences 6(2) (2014) 55-60.
- [4] C. Dubbs and D. Siege. Computing determinants. The College Mathematics Journal 18 (1987) 48-50.
- [5] W. M. Gentleman and S. C. Johnson (1974). The evaluation of determinants by expansion by minors and the general problem of substitution. Mathematics of Computation, 28(126) (1974) 543-548.
- [6] A. Assen and J. Venkateswara Rao. A Study on the Computation of the Determinants of a 3×3 Matrix. International Journal of Science and Research 3(6) (2014) 912-921
- [7] C. L. Dodgson. Condensation of Determinants, Being a New and Brief Method for Computing their Arithmetic Values. Proc. Roy. Soc. Ser. A. 15 (1866-1887) 150-155.
- [8] M. A. El-Mikkawy. Fast Algorithm for Evaluating nth Order Tri-diagonal Determinants. J. Comput. Appl. Math. 166(2014) 581-584
- [9] Q. Gjonbalaj and A. Salihu. Computing the Determinants by Reducing the Orders by four. Applied Mathematics E-Notes 10 (2010) 151-158
- [10] D. Hajrizaj. New method to compute the determinant of 3X3 matrix, International Journal of Algebra 3(5) (2009) 211-219
- [11] Ilse C. F. Ipsen and Dean J. Lee. Determinant Approximations, Numer. Linear Algebra Appl. (2005) 1-15. https://arxiv.org/abs/1105.0437
- [12] L. G. Molinari. Determinants of Block Tridiagonal Matrices. Linear Algebra and its Applications 429 (2008) 2221-2226.
- [13] V. Y. Pan. Computing the determinant and the characteristic polynomial of a matrix via solving linear systems of equations. Information Processing Letters 28 (2) (1998) 71-75.
- [14] C. M. Radi ́. A Generalization of the Determinant of a Square Matrix and Some of Its Applications in Geometry. Serbo-Croatian Matematika 20 (1991) 19-36.
- [15] R. Adrian and E. Torrence. “Shutting up like a telescope”: Lewis Carroll's “Curious” Condensation Method for Evaluating Determinants. College Mathematics Journal 38(2) (2007) 85-95
- [16] H. Teimoori and M. Bayat, A. Amiri and E, Sarijloo. A New Parallel Algorithm for Evaluating the Determinant of a Matrix of Order n. Euro Combinatory (2005), 123-134.
- [17] X. B. Chen. A fast algorithm for computing the determinants of banded circulant matrices. Applied Mathematics and Computation 229 (2014) 201-07
- [18] D. Bozkurt, Tin-Yau Tam, Determinants and inverses of circulant matrices with Jacobsthal and Jocobsthal–Lucas numbers. Appl. Math. Comput. 219 (2012) 544-551
- [19] X.G. Lv, T.Z. Huang, J. Le, A fast numerical algorithm for the determinant of a pentadiagonal matrix. Appl. Math. Comput. 196 (2008) 835-841
- [20] X.G. Lv, T.Z. Huang, J. Le. A note on computing the inverse and the determinant of a pentadiagonal Toeplitz Matrix. Appl. Math. Comput. 206 (2008) 327-331
- [21] V. Pan, Complexity of computation with matrices and polynomials. SIAM Rev. 34 (1992), 225–262.
- [22] J. Dutta and S.C. Pal. Generalization of a New Technique for Finding the Determinant of Matrices. Journal of Computer and Mathematical Sciences 2(2) (2011) 266-273.
- [23] S.Q. Shen, J.M. Cen, Y. Hao. On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers. Appl. Math. Comput. 217 (2011) 9790-9797

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-b39afe63-043e-4679-b534-9404a0023bbd