Preferences help
enabled [disable] Abstract
Number of results
2016 | 49 | 2 | 204-222
Article title

Biological synthesis of Titanium Dioxide nanoparticles by Curcuma longa plant extract and study its biological properties

Title variants
Languages of publication
The objective of this study was biosynthesis of titanium dioxide nanoparticles (TiO2 NPs) using Curcuma longa aqueous extract and characterize them. Study their effect on the growth, sporulation, pathogenicity of Fusarium graminearum and some wheat plants parameters compared with standards industrials nanoparticles. C. longa aquatic extract was used to biosynthesis TiO2 NPs by two methods. At first method, TiO2 was found in both colloidal solutions (CS) and nanopawder while it found in jest nanopawder in second method. All biosynthetic nanoparticles were in nano size. It was: 91.37 nm, 76.36 nm of (CS) and nanopawder for first methods respectively while it was 92.6 nm of nanopawder in second method. All nanoparticles have good optical properties. Crystal’s shape of nanopawder were in three form: anatase, rutilr and brookite and it was anatase in colloidal solutionat first method while it was pure anatase innanopawder when at second method. The average crystallite size of was calculate by Scherer's equation, it was 43.088 nm and 22.881 nm for nanopawder and colloidal solution respectively at first method. It was 45.808 nm for nanopawder at second method. All concentrations of nanoparticles were reduced fungal and spores. These decreasing were more effective using biosynthetic compare with industrial synthetic nanoparticles. There were reductions in damping-off caused by F. graminearum by biosynthetic NBs in both varieties of plant (Al-Rasheed and Tamuze-2). These was better than the effect of industrial synthetic nanoparticles. The resistance to damping off and the growth of plant in Al-Rasheed variety was more sensitive compared with Tamuze-2 variety especially at higher concentrations. There were decrease in all plant's parameters at most concentrations of TiO2 biological synthetic compare with industrial synthetic nanoparticles in Al-Rasheed variety, while there were inductions in some plant's parameters by biosynthetic nanoparticles compared with industrial synthetic in Tamuze-2 variety. Finally, C. longa can be used to biosynthesis TiO2 NPs with good biological properties.
Physical description
  • Department of Biology, College of Science, AL-Mustainsiriyah University, Baghdad, Iraq
  • Department of Biology, College of Science, AL-Mustainsiriyah University, Baghdad, Iraq
  • Department of Physics, College of Science, AL-Mustainsiriyah University, Baghdad, Iraq
  • [1] Kelsall, R W.; Hamley, I W. and Geoghegan. M. (2005). Nanoscale Science and Technology. John Wiley & Sons Ltd, 473p.
  • [2] Zhou, R.; Wu, X.; Hao, X.; Zhou, F.; Li, H. Li, H. and W. Rao. (2008). Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation, Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms, 266(4): 599-603.
  • [3] Soomro, R.A.; Hussain, S. T.; Sherazi, Sirajuddin,; Memon1, N.; Shah, M. R.; Kalwar, N.H.; Hallam, K. R.. and Shah, A. (2014). Synthesis of air stable copper nanoparticles and their use in catalysis. Adv. Mat. Lett. 5(4): 191-198.
  • [4] Salam, HA.; Rajiv, P.; Kamaraj, M.; Jagadeeswaran, P.; Gunalan, S. and Sivaraj, R. (2012). Plants: Green Route for Nanoparticle Synthesis. I. Res. J. Biological Sci., 1(5): 85-90.
  • [5] Sarkar, M.B.; Datta, J.; Mondal, D. and Mukhopadhyay, S. (2013). Synthesis and morphology of silicon nanoparticles by deposition time varying LPCVD method to demonstrate the variation of height, density and size. International Journal of Research in Engineering and Technology. 2(8): 400-404.
  • [6] khashan, K.S. (2013). Synthesis, Structural and Optical Properties of Cds Nanoparticles Prepared by Chemical Method. Eng. & Tech. Journal 31(1): 39-48.
  • [7] Pérez, J.; Bax, L. and Escolano. C. (2005). Roadmap report on nanoparticles. Barcelona, Spain: Willems & van den Wildenberg (W&W) (ES/NL). pp. 57.
  • [8] Wu, SH. and Chen, DHJ. (2004). Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J. Colloid Interface Sci., 273: 165-169.
  • [9] Bali, R.; Razak, N.; Lumb, A. and Harris, A.T. (2006). The synthesis of metallic nanoparticles inside live plants. Laboratory for Sustainable Technology, School of Chemical and Biomolecular Engineering, The University of Sydney, NSW, Australia. 4p.
  • [10] Castro, L.; Blázquez, M.L.; Muñoz, J.Á.; González, F.G. and Ballester, A. (2014). Mechanism and Applications of Metal Nanoparticles Prepared by Bio-Mediated Process. Reviews in Advanced Sciences and Engineering 3: 1-18.
  • [11] Jha, Z.; Behar, N.; Sharma, S N.; Chandel, G.; Sharma, D. and Pandey, M. (2011). Nanotechnology: prospects of agricultural advancement. Nano Vision, 1(2): 88-100.
  • [12] Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.K. and Poinern, G.E. J. (2015). Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials 8: 7278-7308.
  • [13] Makarov, VV.; Love, AJ.; Sinitsyna, OV; Makarova, SS.; Yaminsky, IV.; Taliansky, ME, Kalinina, NO. (2014). Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta. Naturae, 6(1): 35-44.
  • [14] Shameli, K.; Bin Ahmad, M.; Shabanzadeh.; P. Al-Mulla, EA.; Zamanian, A.; Abdollahi, Y.; Jazayeri. SD.; Eili, M.; Jalilian, FZ. And Haroun, RZ. (2013). Effect of Curcuma longa tuber powder extract on size of silver nanoparticles prepared by green method. Res Chem Intermed, 40: 1313-1325.
  • [15] Roopan, SM; Bharathi, A.; Prabhakarn, A.; Rahuman, AA; Velayutham, K. and Rajakumar, G. (2012). Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosapeel extract. Spectrochim Acta. A Mol. Biomol. Spectrosc. 98: 86-90.
  • [16] Velayutham, K.; Rahuman, AA.; Rajakumar, G.; Santhoshkumar, T.; Marimuthu, S. and Jayaseelan ,C. (2011). Evaluation of Catharanthus roseusleaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol Res, 111(6): 2329-2337.
  • [17] Gong, P.; Li, H.; He, X.; Wang, K.; Hu, J. and Zhang, S. (2007). Preparation and antibacterial activity of Fe3O4, Ag nanoparticles. Nanotechnology, 18(28): 604-611.
  • [18] Siegel, RW.; Hu, E. and Roco, MC. (1999). Nanostructure Science and Technology: R & D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices. Kluwer Academic Publishers, Boston, pp. 336.
  • [19] Seabra, AB. And Duran, N. (2015). Nano toxicology of metal oxide nanoparticles. Metals, 5(2): 934-975.
  • [20] Mahmoodzadeh, H; Nabavi, M. and Kashefi, H. (2013). Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J. Ornamental Hortic Plants, 3: 25-32.
  • [21] Jesline, A.; John, N. P.; Narayanan, P. M.; Vani, C. and Murugan, S. (2015). Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Applied Nanoscience 5(2): 157-162.
  • [22] Liu, K.; Lin, X. and Zhao, J. (2013). Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors. Int J Nanomedicine ; 8: 2509-2520.
  • [23] Filpo, G.D.; Palermo,A.M.; Rachiele,F. and Nicoletta, F.P. (2013). Preventing fungal growth in wood by titanium dioxide nanoparticles. International Biodeterioration & Biodegradation. 85: 217-222.
  • [24] Yousef, A M. (2015). Effect of titanium dioxide TiO2 nano and bulk particles on seeds germination and growth of wheat (Triticum aestivum L.) and rice (Oryza sativa L.). DMS in Biology/Botany/ College of Science/ Al-Mustansiriyah University.
  • [25] Azimi, R.; Feizi, H. and Hosseini, M. K. (2013). Can bulk and nanosized titanium dioxide particles improve seed germination features of wheatgrass (Agropyronde sertorum)? Notulae Scientia Biologicae, 5(3): 325-331.
  • [26] Feizi, H.; Moghaddam, R. P.; Shahtahmassebi, N. and Fotovat, A. (2012). Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research, 146(1): 101-106.
  • [27] Naveen, H. K.S.; Gaurav Kumar.; Karthik L.; and Bhaskara Rao K.V. (2010). Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Archives of Applied Science Research, 2(6): 161-167.
  • [28] Ba-Abbad, M M.; Kadhum, A H.; Mohamad, A B.; Takriff, M S. and Sopian, K. (2012). Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci. 7: 4871-4888.
  • [29] Cottrell, A. (1975) Introductions to Metallurgy, Arnold, London, P.173.
  • [30] Longhurst, R.S. (1957). Geometrical and physical optics, Longmans green, Londan.
  • [31] Kumar, V.; Khan, K L A.; Singh, G.; Sharma, T P. and Hussain, M. (2007). ZnSe sintered films: Growth and characterization. Appl . Surf. Sci., 253(7): 3543-3546
  • [32] Tauc, J.; (1974). Amorphous and Liquid Semiconductors, Plenum Press, London and New York. pp. 159.
  • [33] Cullity, BD., Elements of X-ray Diffraction, IInd Ed, Addison Wesley, London. 1974.
  • [34] Wei, W.; Mao, X.; Ortiz LA.; Sadoway DR. (2011). Oriented silver oxide nanostructures synthesized through a template-free electrochemical route, Journal of Materials Chemistry, 21(2): 432-438.
  • [35] Jobst, P.J.; Stenzel, O; Schürmann, M.; Modsching, N.; Yulin, S.; Wilbrandt, S.; Gäbler, D.; Kaiser N. and Tünnermann, A. (2013). Optical properties of unprotected and protected sputtered silver films: Surface morphology vs. UV/VIS reflectance. Adv. Opt. Techn. 3: 91-102.
  • [36] Gargouri, K L.; Gargouri, S.; Rezgui, S.; Trifi, M.; Bahri, N.; and Hajlaoui, M.R. (2009). Pathogenicity and aggressiveness of Fusarium and Microdochium on wheat seedlings under controlled conditions. Tunisian Journal of Plant Protection, 4: 135-144.
  • [37] Feizi, H.; Kamali, M.; Jafari, L. and Moghaddam, P.R. (2013). Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91(4): 506-511.
  • [38] AL-Kaisi, W.A., Muhsen, T.A.A., Hamed, A.S.: 'Effect of mycorrhiza (Glomus mosseae) and superphosphate on physiological characters of Hodeum vulgare', College of Basic Education Journal, 72 (2011) 765-784.
  • [39] Torresdey, J. L.; Parsons, J. G.; Gomez, E.; Peralta-Videa, J.; Troiani, H. E.; Santiago, P.and Yacaman, M. J.(2002). Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants, Nano Lett. 2(4); 397-401.
  • [40] Mukunthan, K. and S. Balaji, S. (2012). Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. International Journal of Green Nanotechnology, 4(2): 71-79.
  • [41] Li, X.; Xu, H.; Chen, Z.S. and Chen, G. (2011). Biosynthesis of nanoparticles by microorganisms and their applications, Journal of Nanomaterials, 1-16.
  • [42] Krishnasamyet, A; Sundaresan, M.; and Velan, P. (2015). Rapid phytosynthesis of nano-sized titanium using leaf extract of Azadirachta indica. International Journal of ChemTech Research 8(4): 2047-2052.
  • [43] Sundrarjan, M. and Gowri, S. (2011). Green synthesis of titanium dioxide nanoparticles byNyctanthes arbor-tristis leaves extract. Chalcogenide Letters 8(8): 447-451.
  • [44] Rajakumar, G.; Rahuman, A.A.; Priyamvada, B. V.; Khanna, G.; Kishore, K D. and Sujin, P.J. (2012). Ecliptaprostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Mater Lett., 68: 115-117.
  • [45] Sankar, R.; Rizwana, K.; Shivashangari, KS. and Ravikumar, V. (2014). Ultra-rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles. Appl.Nanosci, 5: 731-736.
  • [46] Abduz Zahir, A.; Singh, IC.; Bagavan, A.; Kamaraj,C.; Elango, G.; Shankar, J.; Arjaria, N.; Roopan, M.; Abdul Rahuman, A. and Singh, N. ( 2014). Synthesis of Nanoparticles Using Euphorbia prostrata Extract Reveals a Shift from Apoptosis to G0/G1 Arrest in Leishmania donovani.J.Nanomed Nanotechnol. 5)4): 213.
  • [47] Rao, KG.; Ashok, CH.; Rao, KV.; Shilpa, CH. and Tambur, V. (2015). Green Synthesis of TiO2 nanoparticles Using Aloe Vera Extract, (2)1A: 28-34.
  • [48] Ma, X.; Lee, GJ; Deng, Y. and Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ, 408(16): 3053-3061.
  • [49] Krishnaraj, C.; Ramachandran, R.; Mohan, K. and Kalaichelvan, PT. (2012). Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta Part A Mol. Biomol. Spectrosc. 93: 95-99.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.