PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 44 | 257-278
Article title

Ultrasonic velocity, density and viscosity measurement of pyrimidine derivatives in 1,4-dioxane and DMF at various temperatures

Content
Title variants
Languages of publication
EN
Abstracts
EN
The estimation of density, viscosity and ultrasonic velocity of solution of pyrimidine derivatives in 1,4-dioxane and N,N-dimethylformamide was carried out as functions of concentration (0.01 to 0.1 M) and temperature (298.15 to 318.15 K). Some acoustical and apparent parameters such as acoustical impedance (Z), intermolecular free length (Lf), adiabatic compressibility (κs), molar compressibility (W), Vander Waals constant (b), relaxation strength (r), internal pressure (π), apparent molar compressibility (fk), apparent molar volume (fv) etc., have been evaluated using experimental data of ultrasonic velocity (U), density (ρ) and viscosity (η). The characterization of these synthesized compounds was done by IR, 1H NMR and mass spectral data.
Year
Volume
44
Pages
257-278
Physical description
References
  • [1] Nain, A.; Pal, R. and Sharma, R.; “Physicaochemical study of solute-solute and solute-solvent interactions of l-histidine in water+sucrose solutions at different temperatures.” J. Mol. Liq., 165 (2012) 154-160.
  • [2] Jahagirdar, D. V.; Arbad, B. R.; Mirgane, S. R.; Lande, M. K. and Shankarwar A. G.; “Density, ultrasonic velocity and viscosity measurements of four pharmacologically significant drugs in methanol at 25 °C.” J. Mol. Liq., 75 (1998) 33-43.
  • [3] Nozdrev, V. F.; “Application of Ultrasonic in Molecular Physics.” Gordon and Breach, New York (1963).
  • [4] Pierce, D. C.; “Acoustics.”, Mc Graw Hill, New York (1981).
  • [5] Laux, D.; Leveque, G. and Cereser C. V.; “Ultrasonic properties of water/sorbitol solutions.” Ultrason., 49 (2009) 159-161.
  • [6] Kim, W. S.; Yu, M. S.; Choi, I.; Kim and M. G.; “Measurement of ultrasonic relaxational characteristics in aqueous solution of ZnCl2-DMF.” Ungyong Mulli., 11 (1998) 675-682.
  • [7] Ravichandran, S. and Ramanathan, K.; “Ultrasonic study and allied properties of cholesterol in chloroform solutions at 294 K.” J. Pure and Appl. Ultra., 28 (2006) 40-45.
  • [8] Shashikant, I. A.; Rajput, P. R. and Narwade M. L.; “Studies on acoustic properties of some substituted pyrazole, isoxazole and pyrazoline in dioxane at 303 K.” Ind. J. Chem., Sec. A, 44 (2005) 2495-2497.
  • [9] Agrawal, P. B. and Narwade, M. L.; “Prediction of viscosity and ultrasonic behavior of substituted flavone, isoxazole and pyrazole in 70% acetone water mixture.” Acta Cien. Ind., Chem., 28 (2002) 163-166.
  • [10] Akhtar Y.; “Interaction studies of L-proline and L-glutamine with some electrolytes in aqueous media.” J. Ind. Council Chem., 21 (2004) 43-47.
  • [11] Thakur S. K. and Chauhan S.; “Ultrasonic velocity and allied parameters of drug colimax in aq. 1-propanol at 298.15K.” J. Chem. Pharm. Res., 3 (2011) 657-664.
  • [12] Dhondge, S. S.; Paliwal, R. L.; Bhave N. S. and Pandhurnekar, C. P.; “Study of thermodynamic properties of aq. binary mixture of glycine, L-alanine & β-alanine at low temp. (T = 275.15, 279.15, and 283.15) K.” J. Chem. Therm., 45 (2012) 114-121.
  • [13] Liu, L. J. and Hong, J. H.; “Synthesis and anti-HIV activity of 4’-modified cyclopentenyl pyrimidine c-nucleosides.” Nucleosides, Nucleotides and Nucleic acids, 28 (2009) 303-314.
  • [14] Gholap, A. R.; Toti, K. S.; Shirazi, F.; Deshpande, M. V. and Srinivasan, K. V.; “Efficient synthesis of antifungal pyrimidines via palladium catalyzed suzuki/sonogashira cross-coupling reaction from biginelli 3, 4-dihydropyrimidin-2(1h)-ones.” Tetrahedron, 64 (2008) 10214-10223.
  • [15] Mai, A.; Rotili, D.; Massa, S.; Brosch, G.; Simonetti, G.; Passariello, C. and Palamara A. T.; “Discovery of uracil-based histone deacetylase inhibitors able to reduce acquired antifungal resistance and trailing growth in Candida albicans.” Bioorg. Med. Chem. Lett., 17 (2007) 1221-1225.
  • [16] Rahaman, S. A.; Prasad, Y. R.; Kumar, P. and Kumar, B.; “Synthesis and anti-histaminic activity of some novel pyrimidines.” Sau. Pharm. J., 17 (2009) 255-258.
  • [17] Y. R. Prasad, S. A. Rahaman, “Anti-histamine activity of newly synthesized pyrimidines.” Int. J. Chem. Sci., 6 (2008) 2038-2044.
  • [18] Fhid, O.; Pawłowski, M.; Filipek, B.; Horodynska, R. and Maciag D.; “Central nervous system activity of new pyrimidine-8-on[2,1f]theophylline9alkylcarboxylicacids derivatives.” Pol. J. Pharmacol, 54 (2002) 245-254.
  • [19] Amr, A. E.; Mohamed, A. M.; Mohamed, S. F.; Abdel-Hafez, N. A. and Hammam, A. G.; “Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives.” Bioorg. Med. Chem., 14 (2006) 5481-5488.
  • [20] Dudhe, R.; Sharma, P. K.; Verma, P. and Chaudhary, A.; “Pyrimidine As Anticancer Agent: A Review.” J. Adv. Sci. Res., 2 (2011) 10-17.
  • [21] Hammam, A. E. G.; Sharaf, M. A. and EI-Hafez, N. A. A.; “Synthesis and anti-cancer activity of pyridine and thiazolopyrimidine derivatives using 1-ethylpiperidone as a synthon.” Ind. J. Chem., 40 (2001) 213-221.
  • [22] Gupta, J. K.; Sharma, P. K.; Dudhe, R.; Mondal, S. C.; Chaudhary, A. and Verma, P. K.; “Synthesis and analgesic activity of novel pyrimidine derivatives of coumarin moiety.” Acta Pol. Pharm., 68 (2011) 785-793.
  • [23] Wyrzykiewicz, E.; Bartkowiak, G. and Kedzia, B. “Synthesis of anti-microbial properties of S-Substituted derivatives of 2-thiouracile.” Farmaco Poland, 48 (1993) 979-988.
  • [24] Chitre, T. S.; Kathiravan, M. K.; Chothe, A. S.; Rakholiya, V. K.; Asgaonkar, K. D.; Patil, S. M. and Bothara, K. G.; “Synthesis and antitubercular activity of some substituted pyrimidine derivatives.” J. Pharm. Res., 4 (2011) 1882-1883.
  • [25] Kandeel, M. M.; Ali, S. M.; ElALL, E. K. A. A.; Abdelgawad, M. A. and Lamie, P. F.; “Synthesis and antitumor activity of novel pyrazolo[3,4-d]pyrimidines and related heterocycles.” Der Pharma Chemica, 4 (2012) 1704-1715.
  • [26] Sirichaiwat, C.; Intaraudom, C.; Kamchonwongpaisan, S.; Vanichtanankul, J.; Thebtaranonth, Y. and Yuthavong, Y.; “Target guided synthesis of 5-benzyl-2,4-diamono pyrimidines: Their antimalarial activities and binding affinities to wild type and mutant dihydrofolate reductases from plasmodium falciparum.” J. Med. Chem., 47 (2004) 345-354.
  • [27] Morgan, J.; Haritakul, R. and Keller, P. A. “Antimalarial activity of 2,4-diaminopyri midines.” Lett. Drug Des. Discov., 5 (2008) 277-280.
  • [28] Alam, O.; Khan, S. A.; Siddiqui, N.; Ahsan, W.; Verma, S. P.; Gilani, S. J.; “Antihyper tensive activity of newer 1, 4-dihydro-5-pyrimidine carboxamides: Synthesis and pharmacological evaluation.” Eur. J. Med. Chem., 45 (2010) 5113-5119.
  • [29] Riddick, J. A.; Bunger, W. B. and Sakano, T. “Organic solvents-physical properties and methods of purification, techniques of chemistry.” New York, (1986).
  • [30] Rathnam, M. V.; Mankumare, S.; Jain, K. and Kumar, M. S.; “Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate + hydrocarbons at (303.15, 308.15 and 313.15) K.” J. Solution Chem., 41 (2012) 475-490.
  • [31] Gucker, F. T.; “The apparent molal heat capacity, volume, and compressibility of electrolytes.” Chem. Rev., 13 (1933) 111-130.
  • [32] Masson, D. O.; “Solute molecular volumes in relation to solvation and ionization.” Philosophical. Magazine, 8 (1929) 218-235.
  • [33] Gopal, R. and Siddiqi, M. A. “A study of ion-solvent interaction of some tetraalkylam monium and common ions in N-methylacetamide from apparent molal volume data.” J. Phys. Chem. 1969, 73, 3390-3394.
  • [34] Saha, N.; Das, B. and Hazra, D. K.; “Viscosities and excess molar volumes for aceto nitrile + methanol at 298.15, 308.15, and 318.15 K.” J. Chem. Eng. Data, 40 (1995) 1264-1266.
  • [35] Bachem, C. H.; “The compressibility of electrolytic solution.” Z. Physik., 101 (1936) 541-577.
  • [36] Aswale, S. S.; Aswale, S. R. and Hajare, R. S.; “Adiabatic compressibility, intermole cular free length and specific acoustic impedance of antibiotic ampicillin sodium.” Int. J. Pharm. Pharm. Sci., 5 (2013) 76-79.
  • [37] Nikam, P. S.; Ansari, H. R. and Hasan, M.; “Ultrasonic velocity studies of dextrose and sucrose in water and in aqueous ammonium chloride at different temperatures.” J. Pure Appl. Ultrason., 20 (1998) 75-78.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-b1af27c5-e39d-4e6e-88ed-a8b82770c68f
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.