PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 13 | 2 | 123-135
Article title

Właściwości i kliniczne możliwości zastosowania ludzkich komórek nabłonka owodni (HAEC)

Content
Title variants
EN
Properties and clinical application of human amniotic epithelial cells (HAEC)
Languages of publication
EN PL
Abstracts
EN
In the contemporary medicine, undifferentiated progenitor cells of various origin and various degree of plasticity have become highly promising. Their most abundant, renewable and uncontroversial sources are placental tissues and umbilical blood. The only epithelial cells in this group come from the amnion which is used as a whole as an allogenic biological dressing. They have a range of unusual properties, such as the relative lack of histocompatibility antigens, plasticity (enabling their differentiation into a number of epithelial and mesenchymal cells) and the lack of neoplastic capacity. Amniotic epithelial cells are the only epithelial cells of the placenta. It is believed that they retain their progenitor (pluripotent) properties even in term pregnancies. This probably results from the fact that they omit the differentiation that accompanies gastrulation. Such features are typical of all placental cells which differ from amniotic epithelial cells only in their non-epithelial origin. In culture conditions, amniotic epithelial cells are characterized by a considerable plasticity: they can be stimulated to differentiate into adipocytes, chondrocytes, osteocytes, myocytes, cardiomyocytes, neurocytes, pancreatic cells and hepatocytes. To date, however, the attempts to direct their development towards the epidermis have not been successful. Obtaining multilayer epidermis in amniotic epithelial culture would be of considerable importance for tissue engineering of biological dressings. Amniotic membranes have been used for this purpose for many years, but because of their complex structure and metabolic requirements, they do not heal but dry up when applied to the wound. Some reports, however, indicate that the epithelium isolated from the amnion could be able to heal thus being suitable for allogenic grafts.
PL
Współczesna medycyna coraz większe nadzieje pokłada w niezróżnicowanych komórkach progenitorowych różnego pochodzenia i o różnym stopniu plastyczności. Ich najbardziej zasobnym, odnawialnym i niekontrowersyjnym źródłem wydają się tkanki łożyska i krew pępowinowa. Jedyne w tej grupie komórki nabłonkowe pochodzą z owodni, wykorzystywanej często w całości jako allogeniczny opatrunek biologiczny. Mają one szereg niezwykłych cech, takich jak względny brak ekspresji antygenów zgodności tkankowej, plastyczność (umożliwiająca różnicowanie w cały szereg komórek nabłonkowych i mezenchymalnych) oraz brak zdolności do nowotworzenia. Komórki nabłonka owodni są jedynymi nabłonkowymi komórkami łożyska. Uważa się, że nawet w donoszonej ciąży zachowują właściwości progenitorowe (pluripotencjalne). Wynika to prawdopodobnie z faktu, iż pomijają różnicowanie towarzyszące gastrulacji. Cechy te przejawiają zresztą wszystkie komórki łożyska, różniące się od komórek nabłonka owodni jedynie nienabłonkowym pochodzeniem. W hodowli komórki nabłonka owodni charakteryzują się dużą plastycznością: ulegają stymulacji do różnicowania w kierunku adypocytów, chondrocytów, osteocytów, miocytów, kardiomiocytów, neurocytów, komórek trzustki i hepatocytów. Dotychczas nie udało się jednak skierować ich rozwoju w kierunku naskórka. Uzyskanie nabłonka wielowarstwowego w hodowli komórek nabłonka owodni miałoby ogromne znaczenie dla inżynierii tkankowej opatrunków biologicznych. Błony owodniowe wykorzystywane są w tym celu od wielu lat, jednak wskutek złożonej struktury i wymagań metabolicznych nie ulegają wgajaniu – wysychają po położeniu na powierzchni rany. Niektóre badania wskazują natomiast, że nabłonek izolowany z owodni mógłby się wgajać, nadawałby się zatem do allogenicznych przeszczepów.
Discipline
Publisher

Year
Volume
13
Issue
2
Pages
123-135
Physical description
Contributors
  • Klinika Ginekologii Onkologicznej, Centrum Onkologii – Instytut im. Marii Skłodowskiej-Curie w Warszawie, Polska, arkadiuszgawryluk@interia.pl
  • Zakład Chirurgii Plastycznej Endoskopowej, Samodzielny Publiczny Szpital Kliniczny im. prof. W. Orłowskiego Centrum Medycznego Kształcenia Podyplomowego w Warszawie, Polska
References
  • Grueterich M, Tseng SC: Human limbal progenitor cells expanded on intact amniotic membrane ex vivo. Arch Ophthalmol 2002; 120: 783–790.
  • Sato H, Shimazaki J, Shinozaki N et al.: Role of growth factors for ocular surface reconstruction after amniotic membrane transplantation. Invest Ophthalmol Vis Sci 1998; 39: S428.
  • Sangwan VS, Burman S, Tejwani S et al.: Amniotic membrane transplantation: a review of current indications in the management of ophthalmic disorders. Indian J Ophthalmol 2007; 55: 251–260.
  • Marangon FB, Alfonso EC, Miller D et al.: Incidence of microbial infection after amniotic membrane transplantation. Cornea 2004; 23: 264–269.
  • Davis JW: Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital. Johns Hopkins Med J 1910; 15: 307–396.
  • Sabella N: Use of fetal membranes in skin grafting. Med Records NY 1913; 83: 478–480.
  • de Rötth A: Plastic repair of conjunctival defects with fetal membranes. Arch Ophthalmol 1940; 23: 522–525.
  • Schwab IR: Cultured corneal epithelia for ocular surface disease. Trans Am Ophthalmol Soc 1999; 97: 891–986.
  • Kruse FE, Cursiefen C: Surgery of the cornea: corneal, limbal stem cell and amniotic membrane transplantation. Dev Ophthalmol 2008; 41: 159–170.
  • Mohammad J, Shenaq J, Rabinovsky E et al.: Modulation of peripheral nerve regeneration: a tissue-engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap. Plast Reconstr Surg 2000; 105: 660–666.
  • Miyamoto K, Hayashi K, Suzuki T et al.: Human placenta feeder layers support undifferentiated growth of primate embryonic stem cells. Stem Cells 2004; 22: 433–440.
  • Jin CZ, Park SR, Choi BH et al.: Human amniotic membrane as a delivery matrix for articular cartilage rep air. Tissue Eng 2007; 13: 693–702.
  • Portmann-Lanz CB, Ochsenbein-Kölble N, Marquardt K et al.: Manufacture of a cell-free amnion matrix scaffold that supports amnion cell outgrowth in vitro. Placenta 2007; 28: 6–13.
  • Niknejad H, Peirovi H, Jorjani M et al.: Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 2008; 15: 88–99.
  • Tyszkiewicz JT, Uhrynowska-Tyszkiewicz IA, Kaminski A et al.: Amnion allografts prepared in the Central Tissue Bank in Warsaw. Ann Transplant 1999; 4: 85–90.
  • Wilshaw SP, Kearney J, Fisher J et al.: Biocompatibility and potential of acellular human amniotic membrane to support the attachment and proliferation of allogeneic cells. Tissue Eng Part A 2008; 14: 463–472.
  • Parolini O, Alviano F, Bagnara GP et al.: Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 2008; 26: 300–311.
  • Bartel H: Embriologia. Wydawnictwo Lekarskie PZWL, Warszawa 1999.
  • Miki T, Strom SC: Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev 2006; 2: 133–142.
  • Miki T, Marongiu F, Ellis E et al.: Isolation of amniotic epithelial stem cells. Curr Protoc Stem Cell Biol 2007; Chapter 1: Unit 1E.3.
  • Terada S, Matsuura K, Enosawa S et al.: Inducing proliferation of human amniotic epithelial (HAE) cells for cell therapy. Cell Transplant 2000; 9: 701–704.
  • Henderson JK, Draper JS, Baillie HS et al.: Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 2002; 20: 329–337.
  • Pesce M, Schöler HR: Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 2001; 19: 271–278.
  • Tamagawa T, Ishiwata I, Saito S: Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Hum Cell 2004; 17: 125–130.
  • Mosquera A, Fernández JL, Campos A et al.: Simultaneous decrease of telomere length and telomerase activity with ageing of human amniotic fluid cells. J Med Genet 1999; 36: 494–496.
  • Akle CA, Adinolfi M, Welsh KI et al.: Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 1981; 2: 1003–1005.
  • Lefebvre S, Adrian F, Moreau P et al.: Modulation of HLA-G expression in human thymic and amniotic epithelial cells. Hum Immunol 2000; 61: 1095–1101.
  • Sakuragawa N, Tohyama J, Yamamoto H: Immunostaining of human amniotic epithelial cells: possible use as a transgene carrier in gene therapy for inborn errors of metabolism. Cell Transplant 1995; 4: 343–346.
  • Li H, Niederkorn JY, Neelam S et al.: Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci 2005; 46: 900–907.
  • Wolbank S, Peterbauer A, Fahrner M et al.: Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng 2007; 13: 1173–1183.
  • Miki T, Lehmann T, Cai H et al.: Stem cell characteristics of amniotic epithelial cells. Stem Cells 2005; 23: 1549–1559.
  • Sakuragawa N, Thangavel R, Mizuguchi M et al.: Expression of markers for both neuronal and glial cells in human amniotic epithelial cells. Neurosci Lett 1996; 209: 9–12.
  • Sakuragawa N, Misawa H, Ohsugi K et al.: Evidence for active acetylcholine metabolism in human amniotic epithelial cells: applicable to intracerebral allografting for neurologic disease. Neurosci Lett 1997; 232: 53–56.
  • Elwan MA, Sakuragawa N: Evidence for synthesis and release of catecholamines by human amniotic epithelial cells. Neuroreport 1997; 8: 3435–3438.
  • Kakishita K, Elwan MA, Nakao N et al.: Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s disease: a potential source of donor for transplantation therapy. Exp Neurol 2000; 165: 27–34.
  • Sakuragawa N, Enosawa S, Ishii T et al.: Human amniotic epithelial cells are promising transgene carriers for allogeneic cell transplantation into liver. J Hum Genet 2000; 45: 171–176.
  • Wei JP, Zhang TS, Kawa S et al.: Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplant 2003; 12: 545–552.
  • Hou Y, Huang Q, Liu T et al.: Human amnion epithelial cells can be induced to differentiate into functional insulin-producing cells. Acta Biochim Biophys Sin (Shanghai) 2008; 40: 830–839.
  • Takahashi T, Lord B, Schulze PC et al.: Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 2003; 107: 1912–1916.
  • Liu T, Wu J, Huang Q et al.: Human amniotic epithelial cells ameliorate behavioral dysfunction and reduce infarct size in the rat middle cerebral artery occlusion model. Shock 2008; 29: 603–611.
  • Sankar V, Muthusamy R: Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience 2003; 118: 11–17.
  • Parmar DN, Alizadeh H, Awwad ST et al.: Ocular surface restoration using non-surgical transplantation of tissue-cultured human amniotic epithelial cells. Am J Ophthalmol 2006; 141: 299–307.
  • Sakuragawa N, Yoshikawa H, Sasaki M: Amniotic tissue transplantation: clinical and biochemical evaluations for some lysosomal storage diseases. Brain Dev 1992; 14: 7–11.
  • Zhang H, Iwama M, Akaike T et al.: Human amniotic cell sheet harvest using a novel temperature-responsive culture surface coated with protein-based polymer. Tissue Eng 2006; 12: 391–401.
  • Bilic G, Hall H, Bittermann AG et al.: Human preterm amnion cells cultured in 3-dimensional collagen I and fibrin matrices for tissue engineering purposes. Am J Obstet Gynecol 2005; 193: 1724–1732.
  • Fliniaux I, Viallet JP, Dhouailly D et al.: Transformation of amnion epithelium into skin and hair follicles. Differentiation 2004; 72: 558–565.
  • Sanmano B, Mizoguchi M, Suga Y et al.: Engraftment of umbilical cord epithelial cells in athymic mice: in an attempt to improve reconstructed skin equivalents used as epithelial composite. J Dermatol Sci 2005; 37: 29–39.
  • Lako M, Armstrong L, Cairns PM et al.: Hair follicle dermal cells repopulate the mouse haematopoietic system. J Cell Sci 2002; 115: 3967–3974.
  • Spradling A, Drummond-Barbosa D, Kai T: Stem cells find their niche. Nature 2001; 414: 98–104.
  • Tumbar T, Guasch G, Greco V et al.: Defining the epithelial stem cell niche in skin. Science 2004; 303: 359–363.
  • Blanpain C, Lowry WE, Geoghegan A et al.: Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 2004; 118: 635–648.
  • Morris RJ, Liu Y, Marles L et al.: Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 2004; 22: 411–417.
  • Botchkarev VA, Botchkareva NV, Roth W et al.: Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nat Cell Biol 1999; 1: 158–164.
  • Blumenstein M, Hansen WR, Deval D et al.: Differential regulation in human amnion epithelial and fibroblast cells of prostaglandin E2 production and prostaglandin H synthase-2 mRNA expression by dexamethasone but not tumour necrosis factor-alpha. Placenta 2000; 21: 210–217.
  • Tahara M, Tasaka K, Masumoto N et al.: Expression of messenger ribonucleic acid for epidermal growth factor (EGF), transforming growth factor-alpha (TGF alpha), and EGF receptor in human amnion cells: possible role of TGF alpha in prostaglandin E2 synthesis and cell proliferation. J Clin Endocrinol Metab 1995; 80: 138–146.
  • Denison FC, Kelly RW, Calder AA et al.: Cytokine secretion by human fetal membranes, decidua and placenta at term. Hum Reprod 1998; 13: 3560–3565.
  • Koizumi NJ, Inatomi TJ, Sotozono CJ et al.: Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 2000; 20: 173–177.
  • Ito A, Takizawa Y, Masashige S et al.: Proliferation and stratification of keratinocyte on cultured amniotic epithelial cells for tissue engineering. J Biosci Bioeng 2003; 95: 589–593.
  • Chen YT, Li W, Hayashida Y et al.: Human amniotic epithelial cells as novel feeder layers for promoting ex vivo expansion of limbal epithelial progenitor cells. Stem Cells 2007; 25: 1995–2005.
  • Ito Y, Kawamorita M, Yamabe T et al.: Chemically fixed nurse cells for culturing murine or primate embryonic stem cells. J Biosci Bioeng 2007; 103: 113–121.
  • Meng XT, Chen D, Dong ZY et al.: Enhanced neural differentiation of neural stem cells and neurite growth by amniotic epithelial cell co-culture. Cell Biol Int 2007; 31: 691–698.
  • Szukiewicz D, Szewczyk G, Pyzlak M et al.: Increased production of beta-defensin 3 (hBD-3) by human amniotic epithelial cells (HAEC) after activation of toll-like receptor 4 in chorioamnionitis. Inflamm Res 2008; 57 Suppl 1: S67–S68.
Document Type
review
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-b1a1bbe6-93b8-43f8-985e-aa64779d578f
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.