Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 16 | 2 | 96–100

Article title

Komórki macierzyste raka jako tarcza dla terapii celowanej

Content

Title variants

EN
Cancer stem cells in targeted therapy

Languages of publication

EN PL

Abstracts

EN
Cancer stem cells (CSCs) are one of the causes of failure in the treatment of patients with malignant tumors. Although these cells account for only about 2% of the tumor mass, they possess unique properties, such as self-renewal, unlimited proliferation, asymmetric cell division and the ability to form dormant cells. Cancer stem cells are responsible for treatment failure as they are resistant to standard anticancer treatment (chemo- and radiotherapy), leading to cancer progression, metastases and relapse. They carry specific biomarkers which enable their identification and isolation. The most common markers identified in breast, ovarian, and endometrial cancer as well as in other localizations include: CD44+, C117 (c-Kit), CD133+ (promin), ALDH1 (aldehyde dehydrogenase 1), Oct-4 (POU5F1), nestin and BMI1. Cancer stem cells take advantage of numerous signaling pathways (Wnt, SHH – sonic hedgehog homologue, PI3K/AKT/mTOR). Studies have demonstrated that clinical advantage can be gained using salinomycin (an antibiotic isolated from Streptomyces albus), or metformin, an antidiabetic drug. Research is continued on targeted therapy aimed at cancer stem cells: both cancer stem cell biomarkers or signaling pathways (their components) used by cancer stem cells may be targeted. Studies on microRNA, which coordinates the expression of multiple genes, and on metabolic strategies targeting cellular mitochondria are underway.
PL
Jedną z przyczyn niepowodzeń leczenia chorych na nowotwory złośliwe jest istnienie komórek macierzystych raka (cancer stem cells, CSCs). Stanowią one tylko 2% masy guza, ale mają unikalne właściwości, takie jak samoodnawianie, nieograniczona proliferacja, niesymetryczne podziały i przebywanie w stanie utajenia (dormant cells). Komórki macierzyste raka są oporne na standardowe leczenie (chemio- i radioterapię), powodują więc progresję raka, przerzutowanie i nawroty. Mają swoiste biomarkery, na których podstawie identyfikuje się je oraz izoluje. Do najczęściej wykrywanych markerów w raku piersi, jajnika, endometrium, a także w innych lokalizacjach narządowych należą: CD44+, C117 (c-Kit), CD133+ (promina), ALDH1 (dehydrogenaza aldehydowa 1), Oct-4 (POU5F1), nestyna i BMI1. Komórki macierzyste raka korzystają z licznych szlaków sygnałowania (Wnt, SHH – sonic hedgehog homologue, PI3K/AKT/mTOR). Badania wykazały, że można uzyskać kliniczną korzyść, stosując salinomycynę (antybiotyk wyizolowany ze Streptomyces albus) albo lek przeciwcukrzycowy – metforminę. Trwają badania nad terapią celowaną: tarczą mogą być zarówno biomarkery komórek macierzystych raka, jak i szlaki sygnałowania (lub ich składowe), z których one korzystają. W centrum zainteresowania są również mikroRNA, koordynujące ekspresję wielu genów, i strategie metaboliczne celowane na mitochondria komórkowe.

Discipline

Year

Volume

16

Issue

2

Pages

96–100

Physical description

Contributors

  • Katedra i Klinika Onkologii, Oddział Ginekologii Onkologicznej, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, Poznań, Polska
author
  • Klinika Ginekologii Onkologicznej, Centrum Onkologii – Instytut im. Marii Skłodowskiej-Curie, Oddział w Krakowie, Kraków, Polska
  • Swedish Orphan Biovitrum, Warszawa, Polska

References

  • 1. Tomao F, Papa A, Rossi L et al.: Emerging role of cancer stem cells in the biology and treatment of ovarian cancer: basic knowledge and therapeutic possibilities for an innovative approach. J Exp Clin Cancer Res 2013; 32: 48.
  • 2. Phi LTH, Sari IN, Yang YG et al.: Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int 2018; 2018: 5416923.
  • 3. Venkatesh V, Nataraj R, Thangaraj GS et al.: Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig 2018; 5: 5.
  • 4. Ping YF, Zhang X, Bian XW: Cancer stem cells and their vascular niche: do they benefit from each other? Cancer Lett 2016; 380: 561–567.
  • 5. Gopalan V, Islam F, Lam AK: Surface markers for the identification of cancer stem cells. Methods Mol Biol 2018; 1692: 17–29.
  • 6. Klonisch T, Wiechec E, Hombach-Klonisch S et al.: Cancer stem cell markers in common cancers – therapeutic implications. Trends Mol Med 2008; 14: 450–460.
  • 7. Nassar D, Blanpain C: Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol 2016; 11: 47–76.
  • 8. Zeng J, Ruan J, Luo L et al.: Molecular portraits of heterogeneity related to cancer stem cells in human ovarian cancer. Int J Gynecol Cancer 2014; 24: 29–35.
  • 9. Wang L, Zuo X, Xie K et al.: The role of CD44 and cancer stem cells. Methods Mol Biol 2018; 1692: 31–42.
  • 10. Neradil J, Veselska R: Nestin as a marker of cancer stem cells. Cancer Sci 2015; 106: 803–811. 11. Lin J, Ding D: The prognostic role of the cancer stem cell marker CD44 in ovarian cancer: a meta-analysis. Cancer Cell Int 2017; 17: 8.
  • 12. Cao L, Bombard J, Cintron K et al.: BMI1 as a novel target for drug discovery in cancer. J Cell Biochem 2011; 112: 2729–2741.
  • 13. Kyo S, Kato K: Endometrial cancer stem cell as a potential therapeutic target. Semin Reprod Med 2015; 33: 341–349.
  • 14. Hou T, Zhang W, Tong C et al.: Putative stem cell markers in cervical squamous cell carcinoma are correlated with poor clinical outcome. BMC Cancer 2015; 15: 785.
  • 15. Carrasco E, Alvarez PJ, Prados J et al.: Cancer stem cells and their implication in breast cancer. Eur J Clin Invest 2014; 44: 678–687.
  • 16. Yang F, Xu J, Tang L et al.: Breast cancer stem cell: the roles and therapeutic implications. Cell Mol Life Sci 2017; 74: 951–966.
  • 17. Ruscito I, Cacsire Castillo-Tong D, Vergote I et al.: Exploring the clonal evolution of CD133/aldehyde-dehydrogenase-1 (ALDH1)-positive cancer stem-like cells from primary to recurrent high-grade serous ovarian cancer (HGSOC). A study of the Ovarian Cancer Therapy-Innovative Models Prolong Survival (OCTIPS) Consortium. Eur J Cancer 2017; 79: 214–225.
  • 18. Massard C, Deutsch E, Soria JC: Tumour stem cell-targeted treatment: elimination or differentiation. Ann Oncol 2006; 17: 1620–1624.
  • 19. Takebe N, Miele L, Harris PJ et al.: Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 2015; 12: 445–464.
  • 20. Kotsopoulos IC, Papanikolaou A, Lambropoulos AF et al.: Serous ovarian cancer signaling pathways. Int J Gynecol Cancer 2014; 24: 410–417.
  • 21. Yasuda K, Hirohashi Y, Kuroda T et al.: MAPK13 is preferentially expressed in gynecological cancer stem cells and has a role in the tumor-initiation. Biochem Biophys Res Commun 2016; 472: 643–647.
  • 22. Miyazaki Y, Shibuya M, Sugawara H et al.: Salinomycin, a new polyether antibiotic. J Antibiot (Tokyo) 1974; 27: 814–821.
  • 23. Antoszczak M, Huczyński A: Anticancer activity of polyether ionophore – salinomycin. Anticancer Agents Med Chem 2015; 15: 575–591.
  • 24. Gupta PB, Onder TT, Jiang G el al.: Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138: 645–659.
  • 25. Kim JH, Yoo HI, Kang HS et al.: Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest. Biochem Biophys Res Commun 2012; 418: 98–103.
  • 26. Zhang B, Wang X, Cai F et al.: Antitumor properties of salinomycin on cisplatin-resistant human ovarian cancer cells in vitro and in vivo: involvement of p38 MAPK activation. Oncol Rep 2013; 29: 1371–1378.
  • 27. Kaplan F, Teksen F: Apoptotic effects of salinomycin on human ovarian cancer cell line (OVCAR-3). Tumour Biol 2016; 37: 3897–3903.
  • 28. Chung H, Kim YH, Kwon M et al.: The effect of salinomycin on ovarian cancer stem-like cells. Obstet Gynecol Sci 2016; 59: 261–268.
  • 29. Parajuli B, Shin SJ, Kwon SH et al.: Salinomycin induces apoptosis via death receptor-5 up-regulation in cisplatin-resistant ovarian cancer cells. Anticancer Res 2013; 33: 1457–1462.
  • 30. Naujokat C, Steinhart R: Salinomycin as a drug for targeting human cancer stem cells. J Biomed Biotechnol 2012; 2012: 950658.
  • 31. Minamii T, Nogami M, Ogawa W: Mechanisms of metformin action: in and out of the gut. J Diabetes Investig 2018; 9: 701–703.
  • 32. Kalender A, Selvaraj A, Kim SY et al.: Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 2010; 11: 390–401.
  • 33. Del Barco S, Vazquez-Martin A, Cufí S et al.: Metformin: multi-faceted protection against cancer. Oncotarget 2011; 2: 896–917.
  • 34. Noto H, Goto A, Tsujimoto T et al.: Cancer risk in diabetic patients treated with metformin: a systematic review and metaanalysis. PLoS One 2012; 7: e33411.
  • 35. Dilokthornsakul P, Chaiyakunapruk N, Termrungruanglert W et al.: The effects of metformin on ovarian cancer: a systematic review. Int J Gynecol Cancer 2013; 23: 1544–1551.
  • 36. Kumar S, Meuter A, Thapa P et al.: Metformin intake is associated with better survival in ovarian cancer: a case-control study. Cancer 2013; 119: 555–562.
  • 37. Zhang R, Zhang P, Wang H et al.: Inhibitory effects of metformin at low concentration on epithelial-mesenchymal transition of CD44+CD117+ ovarian cancer stem cells. Stem Cell Res Ther 2015; 6: 262.
  • 38. Saini N, Yang X: Metformin as an anti-cancer agent: actions and mechanisms targeting cancer stem cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50: 133–143.
  • 39. Zhao Y, Sun H, Feng M et al.: Metformin is associated with reduced cell proliferation in human endometrial cancer by inbibiting PI3K/AKT/mTOR signaling. Gynecol Endocrinol 2018; 34: 428–432.
  • 40. Kaur G, Sharma P, Dogra N et al.: Eradicating cancer stem cells: concepts, issues, and challenges. Curr Treat Options Oncol 2018; 19: 20.
  • 41. De Francesco EM, Sotgia F, Lisanti MP: Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochem J 2018; 475: 1611–1634.
  • 42. Mens MMJ, Ghanbari M: Cell cycle regulation of stem cells by microRNAs. Stem Cell Rev 2018; 14: 309–322.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-b18bf115-10b3-4c16-a339-c192272d29d9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.