Preferences help
enabled [disable] Abstract
Number of results
2019 | 123 | 141-160
Article title

Synthesis, spectral and thermal study of (2E, 6E) 2,6-bis(4-hydroxy benzylidene)-4-R-cyclohexanone

Title variants
Languages of publication
(2E,6E) 2,6-Bis(4-hydroxybenzalidene)-4-R-cyclohexanone (BHBC, R = H and MBHBC, R = CH3) was synthesized by condensing cyclohexanone/4-methylcyclohexanone with 4-hydroxy benzaldehyde using mixture of boric acid and hydrochloric acid as a catalyst at 60-70 ºC for 1 h. The structures of BHBC and MBHBC are supported by FTIR, 1HNMR, 13CNMR and MS techniques. DSC endothermic transition at 282.48 ºC (BHBC) and two endothermic transitions at 214.66 and 224.83 ºC and assigned as melting transitions. The compositions of the two isomers of MBHBC were determined from their corresponding peak areas and observed compositions are 81.5% and 18.5%, respectively for Isomer-I and Isomer-II. BHBC and MBHBC are thermally stable up to 305 ºC and 285 ºC, respectively and followed three step degradation kinetics. Both the compounds followed apparently first order degradation kinetics and were completely degraded into low molecular mass hydrocarbons.
Physical description
  • Department of Chemistry, Saurashtra University, Rajkot - 360 005, Gujarat, India
  • Department of Chemistry, Saurashtra University, Rajkot - 360 005, Gujarat, India
  • Department of Chemistry, Saurashtra University, Rajkot - 360 005, Gujarat, India
  • Department of Chemistry, Saurashtra University, Rajkot - 360 005, Gujarat, India
  • [1] S. K. Awasthi, N. Mishra, B. Kumar, M. Sharma, A. Bhattacharya, L. C. Mishraand V. K. Bhasin, Potent antimalarial activity of newly synthesized substituted chalcone analogs in vitro. Med. Chem. Res. 18(6) (2009) 407
  • [2] S. S. Lim, H. S. Kim and D. U. Lee, In vitro antimalarial activity of flavonoids and chalcones. Bull. Korean Chem. Soc. 28(12) (2007) 2495-2497
  • [3] G. Achanta, A. Modzelewska, L. Feng and P. Huang, A Boronic-Chalcone Derivative Exhibits Potent Anti-Cancer Activity through Inhibition of the Proteasome. Molecular pharmacology 70 (2006) 426
  • [4] R. Romagnoli, P. G. Baraldi, M. D. Carrion, C. L.Cara, O. Cruz-Lopez and D.Preti, Design, synthesis, and biological evaluation of thiophene analogues of chalcones. Bioorg. and Med. Chem. 16(10) (2008) 5367-5376
  • [5] Cesar Echeverria, Juan Francisco Santibañez, Oscar Donoso-Tauda, Carlos A. Escobar and Rodrigo Ramirez-Tagle, Structural antitumoral activity relationships of synthetic chalcones. Int. J. Mol. Sci. 10(1) (2009) 221-231
  • [6] E. Szliszka, Z. P.Czuba, B. Mazur, L. Sedek, A. Paradyszand, W. Krol, Chalcones enhance TRAIL-induced apoptosis in prostate cancer cells. Int. J. Mol. Sci. 11(1) (2009) 1-13
  • [7] K. Ilango, P. Valentina and G. Saluja, Synthesis and in-vitro anticancer activity of some substituted chalcone derivatives. Res. J. Pharmac. Bio. and Chem. Sci. 1(2) (2010) 354-359
  • [8] F. Lunardi, M. Guzela, A. T. Rodrigues, R. Corre, I. Eger-Mangrich I., M. Steindel, E. C. Grisard, J. Assreuyand A. R. S. Santosh. Trypanocidal and leishmanicidal properties of substitution-containing chalcones. Antimicrobial Agents and Chemotherapy. 47(4) (2003) 1449-1451
  • [9] X. W. Zhang, D. H.Zhao, Y. C. Quan, L. P. Sun, M-Yin Xand L. P. Guan, Synthesis and evaluation of antiinflammatory activity of substituted chalcone derivatives. Medicinal Chemistry Research 19(4) (2010) 403-412
  • [10] N. M. Bhatia, K. R. Mahadik and M. S. Bhatia, QSAR analysis of 1, 3-diaryl-2-propen-1-ones and their indole analogs for designing potent antibacterial agents. Chemical Papers 63(4) (2009) 456-463
  • [11] S. K. Awasthi, N. Mishra, S. K. Dixit, A. Singh, M. Yadav, S. S. Yadavand, S. Rathaur, Antifilarial activity of 1,3-diarylpropen-1-one: effect on glutathione-S-transferase, a phase II detoxification enzyme. Am. J. Tropical Medicine and Hygiene 80(5) (2009)764-768
  • [12] K. L. Lahtchev, D. I. Batovska, St. P. Parushev, V. M. Ubiyvovkand A. A. Sibirny, Antifungal activity of chalcones: a mechanistic study using various yeast strains. Eur. J.Med. Chem. 43(10) (2008) 2220-2228
  • [13] N. A. Begum, N. Roy, R. A. Laskarand K.Roy, Mosquito larvicidal studies of some chalcone analogues and their derived products: structure–activity relationship analysis. Med. Chem. Res. 20(2) (2011) 184-191
  • [14] R. F. Vasil’ev, V. D. Kanchevab, G. F. Fedorovaa, D. I. Batovskaband A. V. Trofimova, Antioxidant activity of chalcones: The chemiluminescence determination of the reactivity and the quantum chemical calculation of the energies and structures of reagents and intermediates. Kinetics and Catalysis 51(4) (2010) 507-515
  • [15] P. M. Sivakumar, P. K. Prabhakar and M. Doble, Synthesis, antioxidant evaluation, and quantitative structure–activity relationship studies of chalcones. Med. Chem. Res. 20(4) (2010) 482-492
  • [16] S. Vogel, S.Ohmayer, G. Brunnerand J. Heilmann, Natural and non-natural prenylated chalcones: synthesis, cytotoxicity and anti-oxidative activity. Bioinorg. and Med. Chem. 16(8) (2008) 4286-4293
  • [17] D. A. Anderson and E. S. Freeman, The kinetics of the thermal degradation of polystyrene and polyethylene. J. Polym. Sci. 54(159) (1961) 253-260
  • [18] B. J. Ganganiand P. H. Parsania, Effect of substitutions on thermal behavior of symmetric double Schiff bases of 1,1’-bis (4-amino phenyl) cyclohexane. Int. Lett. Chem. Phys. and Astron. 63 (2016) 145-149
  • [19] Jignesh P. Patel and Parsania, Spectral and thermal study of cured tetrafunctional epoxy-ester-amide polymeric framework. Designed Monomers and Polymers 17(5) (2014) 491-500
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.