Journal

Article title

Authors

Content

Title variants

Languages of publication

Abstracts

Publisher

Journal

Year

Volume

Issue

Pages

71-87

Physical description

Contributors

author

- Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Indonesia

author

- Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Indonesia

author

author

- Department of Marine Science, Faculty of Fishery and Marine Science, Universitas Padjadjaran, Indonesia

author

References

- [1] S. Abbasbandy. Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian’s decomposition method. Appl. Math. Comput. vol. 172, pp. 485-490, 2006.
- [2] A. Bekir, O. Guner, and O. Unsal, The First Integral Method for Exact Solutions of Nonlinear Fractional Differential Equations. J. Comput. Nonlinear Dyn., vol. 10, 2015.
- [3] O.P. Agrawal, A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323-337, 2004.
- [4] Z. Bai, S. Zhang, S. Sun, and C. Yin, Monotone iterative method for fractional differential equations. Electron. J. Differ. Equations, vol. 2016, no. 06, pp. 1-8, 2016.
- [5] D. Baleanu, J. Antonio, A.C.J. Luo, Fractional Dynamics and Control, New York: Springer, 2012.
- [6] D.A. Benson, M.M. Meerschaert, J. Revielle, Fractional calculus in hydrologic modeling: a numerical perspective. Adv. Water Resource, 51, 479-497, 2013.
- [7] A.H. Bhrawy, E.H. Doha, J.A. Tenreiro-Machado, S.S. Ezz-Eldien, An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index. Asian J. Control, 2015. doi:10.1002/asjc.1109
- [8] A. H. Bhrawy and S. S. Ezz-Eldien, A new Legendre operational technique for delay fractional optimal control problems, Calcolo, 2015.
- [9] D. Das, P. C. Ray, and R. K. Bera, Solution of Riccati Type Nonlinear Fractional Differential Equation by Homotopy Analysis Method. Int. J. Sci. Res. Educ. vol. 4, no. 6, pp. 5517–5531, 2016.
- [10] F.B.M. Duarte, J.A. Tenreiro Machado, Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators. Nonlinear Dyn. 29, 342-362, 2002.
- [11] V. Feliu, J. A. Gonzalez, and S. Feliu, Corrosion estimates from the transient response to a potential step. Corossion Sci., vol. 49, pp. 3241-3255, 2007.
- [12] J. F. Gómez-aguilar, V. F. Morales-delgado, M. A. Taneco-hernández, D. Baleanu, R. F. Escobar-jiménez, and M. M. Al Qurashi. Analytical Solutions of the Electrical RLC Circuit via Liouville-Caputo Operators with Local and Non-Local Kernels. Entropy, vol. 18, no. 402, 2016.
- [13] V. Gafiychuk, B. Datsko, V. Meleshko, Mathematical modeling of time fractional reaction diffusion systems. J. Comput. Appl. Math. 220, 215-225, 2008.
- [14] B. Ghazanfari and A. Sepahvandzadeh, Adomian Decomposition Method for Solving Fractional Bratu-type Equations. J. Math. Comput. Sci. vol. 8, pp. 236-244, 2014.
- [15] P. Guasoni, No arbitrage under transaction costs, with fractional Brownian motion and beyond. Math. Financ. vol. 16, no. 3, pp. 569-582, 2006.
- [16] J. He, Nonlinear oscillation with fractional derivative and its applications, In: International Conference on Vibrating Engineering’98, Dalian, China, p. 288-291, 1998.
- [17] J. He, Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. vol. 178, pp. 257–262, 1999.
- [18] J. He, Homotopy perturbation method: a new nonlinear analytical technique q. Appl. Math. Comput. vol. 135, pp. 73-79, 2003.
- [19] S. Irandoust-Pakchin, M. Dehghan, S. Abdi-Mazraeh, M. Lakestani, Numerical solution for a class of fractional convection diffusion equations using the flatlet oblique multiwavelets. J. Vib. Control, 20, 913-924, 2014.
- [20] H. Jafari, C. M. Khalique, and M. Nazari, Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion – wave equations. Appl. Math. Lett. vol. 24, no. 11, pp. 1799-1805, 2011.
- [21] J. Kimeu, Fractional Calculus: Definitions and Applications. The Faculty of Mathematics Western Kentucky University, 2009.
- [22] T. Kisela, Fractional Differential Equations and Their Applications, Faculty of Mechanical Engineering Institute of Mathematics, 2008.
- [23] V.V. Kulish, Jos L. Lage, Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124, 2002. doi:10.1115/1.1478062.
- [24] S. Larsson, M. Racheva, F. Saedpanah, Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity. Comput. Method. Appl. Mech. Eng. 283, 196-209, 2015.
- [25] C. Lederman, J-M Roquejoffre, N. Wolanski, Mathematical justification of a nonlinear integrodifferential equation for the propagation of spherical flames. Ann. di Mate. 183, 173-239, 2004.
- [26] S. Liang, C. Peng, Z. Liao, and Y. Wang, State space approximation for general fractional order dynamic systems. Int. J. Syst. Sci. September, pp. 37-41, 2013.
- [27] J. Long and J. Ryoo, Using fractional polynomials to model non-linear trends in longitudinal data. Br. J. Math. Stat. Psychol. vol. 63, pp. 177-203, 2010.
- [28] A. Loverro, Fractional Calculus: History, Definitions and Applications for Engineer, South Bend, IN 46556, University of Notre Dame, 2004.
- [29] R.L. Magin, Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1586-1593, 2010.
- [30] V. Martynyuk and M. Ortigueira, Fractional model of an electrochemical capacitor. Signal Processing, vol. 107, pp. 355-360, 2015.
- [31] F.C. Meral, T.J. Royston, R. Magin, Fractional calculus in viscoelasticity: an experimental study. Commun. Nonl. Sci. Num. Sim. 15, 939-945, 2010.
- [32] W. Mitkowski and P. Skruch, Fractional-order models of the supercapacitors in the form of RC ladder networks. Bull. Polish Acad. Sci. Technical Sci. vol. 61, no. 3, pp. 581–587, 2013.
- [33] Z. Odibat and S. Momani, Modified homotopy perturbation method : Application to quadratic Riccati differential equation of fractional order. Chaos Solitons & Fractals, vol. 36, pp. 167-174, 2008.
- [34] K.B. Oldham, Fractional differential equations in electrochemistry. Adv. Eng. Soft. 41, 9-12, 2010.
- [35] H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing, New York: Wiley, 2000.
- [36] I. Podlubny, Fractional Differential Equations, New York: Academic Press, 1999.
- [37] J.K. Popovic, D.T. Spasic, J. Tosic, J.L. Kolarovic, R. Malti, I.M. Mitic, S. Pilipovic, T.M. Atanackovic, Fractional model for pharmacokinetics of high dose methotrexate in children with acute lymphoblastic leukemia. Commun. Nonlinear Sci. Numer. Simul. 22, 451-471, 2015.
- [38] J. J. S. Ramalho and J. V. Da Silva, A two-part fractional regression model for the financial leverage decisions of micro, small, medium and large firms. Quant. Financ., vol. 9, no. 5, pp. 621-636, 2009.
- [39] R. Saxena and K. Singh, Fractional Fourier transform : A novel tool for signal processing. J. Indian Inst. Sci. vol. 85, pp. 11-26, 2005.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-b0b6b84e-2f95-4cec-b065-2bf24233b281