PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 73 | 182-193
Article title

Wpływ wybranych cytokin prozapalnych oraz stresu oksydacyjnego na kancerogenezę i progresję gruczolakoraków jelita i prostaty

Content
Title variants
EN
Impact of selected pro-inflammatory cytokines and oxidative stress on carcinogenesis and progression of prostate and colorectal adenocarcinomas
Languages of publication
PL EN
Abstracts
EN
Colorectal and prostate cancers have one of highest occurrence rate in Poland and the incidence is constantly increasing. Chronic inflammation and oxidative stress are known factors that promotes the development of cancer. Pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α are produced in normal cells and are responsible for controlling key processes. However overproduction associated with chronic inflammation may induce tumor transformation and support tumor growth by expression of cytokines by tumor microenvironment cells. The concentration of pro-inflammatory cytokines in the serum and expression in tumor tissue may be a diagnostic and prognostic factor for patients with colorectal or prostate cancer, and anti-cytokine therapy may increase patients survival.
PL
Nowotwory jelita grubego i prostaty są jednymi z najczęściej występujących nowotworów w Polsce, a zapadalność na nie stale rośnie. Przewlekły stan zapalny i stres oksydacyjny są znanymi czynnikami promującymi rozwój nowotworów. Cytokiny prozapalne, takie jak IL-1β, IL-6, IL-8 oraz TNF-α, są wytwarzane w prawidłowych komórkach i odpowiadają za kontrolę kluczowych procesów. Związana z występowaniem przewlekłego stanu zapalnego nadprodukcja może jednak indukować transformację nowotworową, a następnie wspomagać rozwój nowotworu przez ekspresję cytokin przez komórki mikrośrodowiska guza. Stężenie cytokin prozapalnych w surowicy krwi oraz ekspresja w tkance guza mogą być czynnikami diagnostycznymi i prognostycznymi u pacjentów chorych na raka jelita grubego lub prostaty, a terapia antycytokinowa może wydłużyć czas ich przeżycia.
Discipline
Publisher

Year
Issue
73
Pages
182-193
Physical description
Contributors
author
  • Katedra i Zakład Biochemii, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
  • Centrum Medyczne „Antrum”, Laboratorium „Demeter”, Bytom
  • Niepubliczny Zakład Opieki Zdrowotnej, Szpital „Jakubiec”, Myszków
  • Katedra i Zakład Biochemii, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
  • Katedra Pielęgniarstwa, Wyższa Szkoła Zarządzania w Częstochowie
References
  • 1. Krajowy Rejestr Nowotworów. http://onkologia.org.pl. Published 2013, online [Dostęp: 25.05.2019].
  • 2. Zhong Z., Sanchez-Lopez E., Karin M. Autophagy, Inflammation, and Immunity: A Troika Governing Cancer and Its Treatment. Cell. 2016; 166(2): 288–298, doi: 10.1016/j.cell.2016.05.051.
  • 3. Wang K., Karin M. Tumor-Elicited Inflammation and Colorectal Cancer. In: Immunotherapy of Cancer. 128. 1st ed. Elsevier Inc. 2015: 173–196, doi: 10.1016/bs.acr.2015.04.014.
  • 4. Atretkhany K.N., Drutskaya M.S., Nedospasov S.A., Grivennikov S.I., Kuprash4. D.V. Chemokines, cytokines and exosomes help tumors to shape infl ammatory microenvironment. Pharmacol. Ther. 2016; 168: 98–112, doi: 10.1016/j.pharmthera.2016.09.011
  • 5. Jego G., Bataille R., Geffroy-Luseau A., Descamps G., Pellat-Deceunynck C. Pathogen-associated molecular patterns are growth and survival factors for human myeloma cells through Toll-like receptors. Leukemia 2006; 20(6): 1130–1137, doi: 10.1038/sj.leu.2404226.
  • 6. He W., Liu Q., Wang L., Chen W., Li N., Cao X. TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol. Immunol. 2007; 44(11): 2850–2859, doi: 10.1016/j.molimm.2007.01.022.
  • 7. Kelly M.G., Alvero A.B., Chen R., Silasi D.A., Abrahams V.M., Chan S., Visintin I., Rutherford T., Mor G. TLR-4 Signaling Promotes Tumor Growth and Paclitaxel Chemoresistance in Ovarian Cancer. Cancer Res. 2006; 66(7): 3859–3868, doi: 10.1158/0008-5472.CAN-05-3948.
  • 8. Allavena P., Sica A., Solinas G., Porta C., Mantovani A. The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages. Crit. Rev. Oncol. Hematol. 2008; 66(1): 1–9, doi: 10.1016/j.critrevonc.2007.07.004.
  • 9. Balkwill F., Charles K.A., Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005; 7(3): 211–217, doi: 10.1016/j.ccr.2005.02.013.
  • 10. Munn L.L. Cancer and inflammation. Wiley Interdiscip Rev. Syst. Biol. Med. 2017; 9(2): e1370, doi: 10.1002/wsbm.1370.
  • 11. Coussens L.M., Werb Z. Inflammation and cancer. Nature 2002; 420(6917): 860–867, doi: 10.1038/nature01322.
  • 12. Kitajima S., Thummalapalli R., Barbie D.A. Inflammation as a driver and vulnerability of KRAS mediated oncogenesis. Semin. Cell. Dev. Biol. 2016; 58(617): 127–135, doi: 10.1016/j.semcdb.2016.06.009.
  • 13. Zabłocka A., Janusz M. Dwa oblicza wolnych rodników tlenowych. Postępy Hig. Med. Dośw. (online) 2008; 62: 118–124.
  • 14. Poillet-Perez L., Despouy G., Delage-Mourroux R., Boyer-Guittaut M. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol. 2015; 4: 184–192, doi: 10.1016/j.redox.2014.12.003.
  • 15. Reuter S., Gupta S.C., Chaturvedi M.M., Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010; 49(11): 1603–1616, doi: 10.1016/j.freeradbiomed.2010.09.006.
  • 16. Prasad S., Gupta S.C., Tyagi A.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 2017; 387: 95–105, doi:10.1016/j.canlet.2016.03.042.
  • 17. de Sá Junior P.L., Câmara D.A.D., Porcacchia A.S., Fonseca P.M., Jorge S.D., Araldi R.P., Ferreira A.K. The Roles of ROS in Cancer Heterogeneity and Therapy. Oxid Med. Cell Longev. 2017; 2017: 1–12, doi: 10.1155/2017/2467940.
  • 18. Bhattacharya R., Fan F., Wang R., Ye X., Xia L., Boulbes D., Ellis L.M. Intracrine VEGF signalling mediates colorectal cancer cell migration and invasion. Br. J. Cancer. 2017; 117(6): 848–855, doi: 10.1038/bjc.2017.238.
  • 19. Sun Y., Liu W., Ma G., Gao D.W., Jiang Y.Z., Liu Q., Du J.J. Expression of HGF and Met in Human Tissues of Colorectal Cancers: Biological and Clinical Implications for Synchronous Liver Metastasis. Int. J. Med. Sci. 2013; 10(5): 548–559, doi: 10.7150/ijms.5191.
  • 20. Hartmann S., Bhola N.E., Grandis J.R.. HGF/Met Signaling in Head and Neck Cancer: Impact on the Tumor Microenvironment. Clin. Cancer Res. 2016; 22(16): 4005–4013, doi: 10.1158/1078-0432.CCR-16-0951.
  • 21. Yi Y., Zeng S., Wang Z., Wu M., Ma Y., Ye X., Zhang B., Liu H. Cancer-associated fibroblasts promote epithelial-mesenchymal transition and EGFR-TKI resistance of non-small cell lung cancers via HGF/IGF-1/ANXA2 signaling. Biochim. Biophys. Acta Mol. Basis Dis. 2018; 1864(3): 793–803, doi: 10.1016/j.bbadis.2017.12.021.
  • 22. Dmitrieva O.S., Shilovskiy I.P., Khaitov M.R., Grivennikov S.I. Interleukins 1 and 6 as main mediators of inflammation and cancer. Biochem. 2016; 81(2): 80–90, doi: 10.1134/S0006297916020024.
  • 23. Yoshizumi M., Nakamura T., Kato M., Ishioka T., Kozawa K., Wakamatsu K., Kimura H. Release of cytokines/chemokines and cell death in UVB-irradiated human keratinocytes, HaCaT. Cell Biol. Int. 2008; 32(11): 1405–1411, doi: 10.1016/j.cellbi.2008.08.011.
  • 24. Seruga B., Zhang H., Bernstein L.J., Tannock I.F. Cytokines and their relationship to the symptoms and outcome of cancer. Nat. Rev. Cancer 2008; 8(11): 887–899, doi: 10.1038/nrc2507.
  • 25. Hai Ping P., Feng Bo T., Li L., Nan Hui Y., Hong Z. IL-1β/NF-kb signaling promotes colorectal cancer cell growth through miR-181a/PTEN axis. Arch. Biochem. Biophys. 2016; 604: 20–26, doi: 10.1016/j.abb.2016.06.001.
  • 26. Saylor P.J., Kozak K.R., Smith M.R., Ancukiewicz M.A., Efstathiou J.A., Zietman A.L., Jain R.K., Duda D.G. Changes in Biomarkers of Inflammation and Angiogenesis During Androgen Deprivation Therapy for Prostate Cancer. Oncologist. 2012; 17(2): 212–219, doi: 10.1634/theoncologist.2011-0321.
  • 27. Sepah S.C., Bower J.E. Positive affect and inflammation during radiation treatment for breast and prostate cancer. Brain Behav. Immun. 2009; 23(8): 1068–1072, doi: 10.1016/j.bbi.2009.06.149.
  • 28. Rodríguez-Berriguete G., Sánchez-Espiridión B., Cansino J.R., Olmedilla G., Martínez-Onsurbe P., Sánchez-Chapado M., Paniagua R., Fraile B., Royuela M. Clinical significance of both tumor and stromal expression of components of the IL-1 and TNF-α signaling pathways in prostate cancer. Cytokine. 2013; 64(2): 555–563, doi: 10.1016/j.cyto.2013.09.003.
  • 29. Pfitzenmaier J., Vessella R., Higano C.S., Noteboom J.L., Wallace D., Corey E. Elevation of cytokine levels in cachectic patients with prostate carcinoma. Cancer 2003; 97(5): 1211–1216, doi: 10.1002/cncr.11178.
  • 30. Ricote M., García-Tuñón I., Bethencourt F.R., Fraile B., Paniagua R., Royuela M. Interleukin-1 (IL-1α and IL-1β) and its receptors (IL-1RI, IL-1RII, and IL-1Ra) in prostate carcinoma. Cancer 2004; 100(7): 1388–1396, doi: 10.1002/cncr.20142.
  • 31. McCarron S.L., Edwards S., Evans P.R., Gibbs R., Dearnaley D.P., Dowe A., Southgate C., Easton D.F., Eeles R.A., Howell W.M. Influence of cytokine gene polymorphisms on the development of prostate cancer. Cancer Res. 2002;
  • 62(12): 3369–3372, http://www.ncbi.nlm.nih.gov/pubmed/12067976.
  • 32. Zabaleta J., Lin H.Y., Sierra R.A., Hall M.C., Clark P.E., Sartor O.A., Hu J.J., Ochoa A.C. Interactions of cytokine gene polymorphisms in prostate cancer risk. Carcinogenesis 2008; 29(3): 573–578, doi: 10.1093/carcin/bgm277.
  • 33. Zhang J., Dhakal I.B., Lang N.P., Kadlubar F.F. Polymorphisms in inflammatory genes, plasma antioxidants, and prostate cancer risk. Cancer Causes Control. 2010; 21(9): 1437–1444, doi: 10.1007/s10552-010-9571-0.
  • 34. Yencilek F., Yildirim A., Yilmaz S.G., Altinkilic E.M., Dalan A.B., Bastug Y., Isbir T. Investigation of Interleukin-1β Polymorphisms in Prostate Cancer. Anticancer Res. 2015; 35(11): 6057–6061, http://www.ncbi.nlm.nih.gov/pubmed/26504029.
  • 35. Xu H., Ding Q., Jiang H. Genetic Polymorphism of Interleukin-1A (IL-1A), IL-1B, and IL-1 Receptor Antagonist (IL-1RN) and Prostate Cancer Risk. Asian Pac. J. Cancer Prev. 2014; 15(20): 8741–8747, doi:10.7314/APJCP.2014.15.20.8741.
  • 36. Horvat V., Mandić S., Marczi S., Mrčela M., Galić J. Association of IL-1β and IL-10 Polymorphisms with Prostate Cancer Risk and Grade of Disease in Eastern Croatian Population. Coll. Antropol. 2015; 39(2): 393–400,http://www.ncbi.nlm.nih.gov/pubmed/26753456.
  • 37. Michaud D.S., Daugherty S.E., Berndt S.I., Platz E.A., Yeager M., Crawford E.D., Hsing A., Huang W.Y., Hayes R.B. Genetic Polymorphisms of Interleukin-1B (IL-1B), IL-6, IL-8, and IL-10 and Risk of Prostate Cancer. Cancer Res. 2006; 66(8): 4525–4530, doi: 10.1158/0008-5472.CAN-05-3987.
  • 38. Liu Q., Russell M.R., Shahriari K., Jernigan D.L., Lioni M.I., Garcia F.U., Fatatis A. Interleukin-1B Promotes Skeletal Colonization and Progression of Metastatic Prostate Cancer Cells with Neuroendocrine Features. Cancer Res. 2013; 73(11): 3297–3305, doi: 10.1158/0008-5472.CAN-12-3970.
  • 39. Chang M.A., Patel V., Gwede M., Morgado M., Tomasevich K., Fong E.L., Farach-Carson M.C., Delk N.A. IL-1β Induces p62/SQSTM1 and Represses Androgen Receptor Expression in Prostate Cancer Cells. J. Cell Biochem. 2014; 115(12): 2188–2197, doi: 10.1002/jcb.24897.
  • 40. Bouraoui Y., Ben Rais N., Culig Z., Oueslati R. Involvement of interleukin-1β mediated nuclear factor κB signalling pathways to down-regulate prostatespecific antigen and cell proliferation in LNCaP prostate cancer cells. Cell Biol. Int. 2012; 36(5): 449–454, doi: 10.1042/CBI20100922.
  • 41. Schulze J., Weber K., Baranowsky A., Streichert T., Lange T., Spiro A.S., Albers J., Seitz S., Zustin J., Amling M., Fehse B., Schinke T. p65-Dependent production of interleukin-1β by osteolytic prostate cancer cells causes an induction of chemokine expression in osteoblasts. Cancer Lett. 2012; 317(1): 106–113, doi: 10.1016/j.canlet.2011.11.016.
  • 42. Chang P., Pan Y., Fan C., Tseng W.K., Huang J.S., Wu T.H., Chou W.C., Wang C.H., Yeh K.Y. Pretreatment serum interleukin-1β , interleukin-6, and tumor necrosis factor-α levels predict the progression of colorectal cancer. Cancer Med. 2016; 5(3): 426–433. doi: 10.1002/cam4.602.
  • 43. Ito H., Kaneko K., Makino R., Konishi K., Kurahashi T., Yamamoto T., Katagiri A., Kumekawa Y., Kubota Y., Muramoto T., Mitamura K., Imawari M. Interleukin-1beta gene in esophageal, gastric and colorectal carcinomas. Oncol. Rep. 2007; 18(2): 473–481. http://www.ncbi.nlm.nih.gov/pubmed/17611673.
  • 44. Andersen V., Holst R., Kopp T.I., Tjønneland A., Vogel U. Interactions between Diet, Lifestyle and IL10, IL1B, and PTGS2/COX-2 Gene Polymorphisms in Relation to Risk of Colorectal Cancer in a Prospective Danish Case-Cohort Study. PLoS One 2013; 8(10): e78366, doi: 10.1371/journal.pone.0078366.
  • 45. Banerjee R.R., Lazar M.A. Resistin: molecular history and prognosis. J. Mol. Med. (Berl.) 2003; 81(4): 218–226, doi: 10.1007/s00109-003-0428-9.
  • 46. von Felbert V., Córdoba F., Weissenberger J., Vallan C., Kato M., Nakashima I., Braathen L.R., Weis J. Interleukin-6 Gene Ablation in a Transgenic Mouse Model of Malignant Skin Melanoma. Am. J. Pathol. 2005; 166(3): 831–841, doi: 10.1016/S0002-9440(10)62304-8.
  • 47. Chuang C.H., Huang C.E., Chen H.L. DNA strand breakage and lipid peroxidation after exposure to welding fumes in vivo. Mutagenesis 2010; 25(1): 71–76. doi: 10.1093/mutage/gep047.
  • 48. Ma Y., Ren Y., Dai Z.J., Wu C.J., Ji Y.H., Xu J. IL-6, IL-8 and TNF-α levels correlate with disease stage in breast cancer patients. Adv. Clin. Exp. Med. 2017; 26(3): 421–426, doi: 10.17219/acem/62120.
  • 49. Kucera R., Topolcan O., Treskova I., Kinkorova J., Windrichova J., Fuchsova R., Svobodova S., Treska V., Babuska V., Novak J., Smejkal J. Evaluation of IL-2, IL-6, IL-8 and IL-10 in Malignant Melanoma Diagnostics. Anticancer Res. 2015; 35(6): 3537–3541, http://www.ncbi.nlm.nih.gov/pubmed/26026122.
  • 50. Kovacs E. Multiple Myeloma and B Cell Lymphoma. Investigation of IL-6, IL-6 Receptor Antagonist (IL-6RA), and GP130 Antagonist (GP130A) Using Various Parameters in an In Vitro Model. Scientific World Journal 2006; 6: 888–898, doi: 10.1100/tsw.2006.178.
  • 51. Kumari N., Dwarakanath B.S., Das A., Bhatt A.N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumor Biol. 2016; 37(9): 11553–11572, doi: 10.1007/s13277-016-5098-7.
  • 52. Rose-John S. IL-6 Trans-Signaling via the Soluble IL-6 Receptor: Importance for the Pro-Inflammatory Activities of IL-6. Int. J. Biol. Sci. 2012; 8(9): 1237–1247, doi: 10.7150/ijbs.4989.
  • 53. Niu G., Wright K.L., Huang M., Song L., Haura E., Turkson J., Zhang S., Wang T., Sinibaldi D., Coppola D., Heller R., Ellis L.M., Karras J., Bromberg J., Pardoll D., Jove R., Yu H. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene. 2002; 21(13): 2000–2008, doi: 10.1038/sj.onc.1205260.
  • 54. Siemińska L., Borowski A., Marek B., Nowak M., Kajdaniuk D., Warakomski J., Kos-Kudła B. Serum concentrations of adipokines in men with prostate cancer and benign prostate hyperplasia. Endokrynol. Pol. 2015; 69(2): 120–127, doi: 10.5603/EP.a2018.0006.
  • 55. Milicević N., Mrcela M., Lukić I., Mandić S., Horvat V., Galić J. Comparison between clinical significance of serum proinflammatory protein interleukin-6 and classic tumor markers total PSA, free PSA and free/total PSA prior
  • to prostate biopsy. Coll Antropol. 2014; 38(1): 147–150, http://www.ncbi.nlm.nih.gov/pubmed/24851609.
  • 56. Michalaki V., Syrigos K., Charles P., Waxman J. Serum levels of IL-6 and TNF-α correlate with clinicopathological features and patient survival in patients with prostate cancer. Br. J. Cancer. 2004; 90(12): 2312–2316, doi: 10.1038/sj.bjc.6601814.
  • 57. George D.J., Halabi S., Shepard T.F., Sanford B., Vogelzang N.J., Small E.J., Kantoff P.W. The Prognostic Significance of Plasma Interleukin-6 Levels in Patients with Metastatic Hormone-Refractory Prostate Cancer: Results from Cancer and Leukemia Group B 9480. Clin. Cancer Res. 2005; 11(5): 1815–1820, doi: 10.1158/1078-0432.CCR-04-1560.
  • 58. Liu T.Z., Guo Z.Q., Wang T., Cao Y., Huang D., Wang X.H. Meta-analysis of the role of IL-6 rs1800795 polymorphism in the susceptibility to prostate cancer. Evidence based on 17 studies. Medicine (Baltimore). 2017; 96(11): e6126, doi: 10.1097/MD.0000000000006126.
  • 59. Wu C., Chen M.F., Chen W., Hsieh C. The role of IL-6 in the radiation response of prostate cancer. Radiat. Oncol. 2013; 8: 159, doi: 10.1186/1748-717X-8-159.
  • 60. Coşkun Ö., Öztopuz Ö., Özkan Ö.F. Determination of IL-6, TNF-α and VEGF levels in the serums of patients with colorectal cancer. Cell Mol. Biol. 2017; 63(5): 97, doi: 10.14715/cmb/2017.63.5.18.
  • 61. Lu C., Kuo H., Wang F., Jou M., Lee K., Chuang J.H. Upregulation of TLRs and IL-6 as a Marker in Human Colorectal Cancer. Int. J. Mol. Sci. 2014; 16(1): 159–177, doi: 10.3390/ijms16010159.
  • 62. Bartsch R., Woehrer S., Raderer M., Hejna M. Serum interleukin-6 levels in patients with gastric MALT lymphoma compared to gastric and pancreatic cancer. Anticancer Res. 26(4B): 3187–3190, http://www.ncbi.nlm.nih.gov/pubmed/16886655.
  • 63. Thomsen M., Kersten C., Sorbye H., Skovlund E., Glimelius B., Pfeiffer P., Johansen J.S., Kure E.H., Ikdahl T., Tveit K.M., Christoffersen T., Guren T.K. Interleukin-6 and C-reactive protein as prognostic biomarkers in metastatic colorectal cancer. Oncotarget. 2016; 7(46): 75013–75022, doi: 10.18632/oncotarget.12601.
  • 64. Shimazaki J., Goto Y., Nishida K., Tabuchi T., Motohashi G., Ubukata H., Tabuchi T. In Patients with Colorectal Cancer, Preoperative Serum Interleukin-6 Level and Granulocyte/Lymphocyte Ratio Are Clinically Relevant Biomarkers of Long-Term Cancer Progression. Oncology. 2013; 84(6): 356–361, doi: 10.1159/000350836.
  • 65. Hara M., Nagasaki T., Shiga K., Takahashi H., Takeyama H. High serum levels of interleukin-6 in patients with advanced or metastatic colorectal cancer: the effect on the outcome and the response to chemotherapy plus bevacizumab. Surg. Today. 2017; 47(4): 483–489, doi: 10.1007/s00595-016-1404-7.
  • 66. Kakourou A., Koutsioumpa C., Lopez D.S., Hoffman-Bolton J., Bradwin G., Rifai N., Helzlsouer K.J., Platz E.A., Tsilidis K.K. Interleukin-6 and risk of colorectal cancer: results from the CLUE II cohort and a meta-analysis of prospective studies. Cancer Causes Control. 2015; 26(10): 1449–1460, doi: 10.1007/s10552-015-0641-1.
  • 67. Xu J., Ye Y., Zhang H., Szmitkowski M., Mäkinen M.J., Li P., Xia D., Yang J., Wu Y., Wu H. Diagnostic and Prognostic Value of Serum Interleukin-6 in Colorectal Cancer. Medicine (Baltimore). 2016; 95(2): e2502, doi: 10.1097/MD.0000000000002502.
  • 68. Zhang X., Liu S., Zhou Y. Circulating levels of C-reactive protein, interleukin-6 and tumor necrosis factor-α and risk of colorectal adenomas: a meta-analysis. Oncotarget. 2016; 7(39): 64371–64379, doi: 10.18632/oncotarget.11853.
  • 69. Godos J., Biondi A., Galvano F., Basile F., Sciacca S., Giovannucci E.L., Grosso G. Markers of systemic inflammation and colorectal adenoma risk: Meta-analysis of observational studies. World J. Gastroenterol. 2017; 23(10): 1909–1919, doi: 10.3748/wjg.v23.i10.1909.
  • 70. Zhou B., Shu B., Yang J., Liu J., Xi T., Xing Y. C-reactive protein, interleukin-6 and the risk of colorectal cancer: a meta-analysis. Cancer Causes Control. 2014; 25(10): 1397–1405, doi: 10.1007/s10552-014-0445-8.
  • 71. Pettersen K., Andersen S., Degen S., Tadini V., Grosjean J., Hatakeyama S., Tesfahun A.N., Moestue S., Kim J., Nonstad U., Romundstad P.R., Skorpen F., Sørhaug S., Amundsen T., Grønberg B.H., Strasser F., Stephens N., Hoem D., Molven A., Kaasa S., Fearon K., Jacobi C., Bjørkøy G. Cancer cachexia associates with a systemic autophagy-inducing activity mimicked by cancer cell-derived IL-6 trans-signaling. Sci. Rep. 2017; 7(1): 2046, doi: 10.1038/s41598-017-02088-2.
  • 72. Dimitriu C., Martignoni M.E., Bachmann J., Fröhlich B., Tintărescu G., Buliga T., Lică I., Constantinescu G., Beuran M., Friess H. Clinical impact of cachexia on survival and outcome of cancer patients. Rom. J. Intern. Med. 2005; 43(3–4): 173–185, http://www.ncbi.nlm.nih.gov/pubmed/16812978.
  • 73. Holmer R., Wätzig G.H., Tiwari S., Rose-John S., Kalthoff H. Interleukin-6 trans-signaling increases the expression of carcinoembryonic antigen-related cell adhesion molecules 5 and 6 in colorectal cancer cells. BMC Cancer. 2015; 15(1): 975, doi: 10.1186/s12885-015-1950-1.
  • 74. Gołąb J., Jakóbisiak M., Lasek W., Stokłosa T. Immunologia. Wydawnictwo Naukowe PWN. Warszawa 2007.
  • 75. Park H.H., Lo Y.C., Lin S.C., Wang L., Yang J.K., Wu H. The Death Domain Superfamily in Intracellular Signaling of Apoptosis and Inflammation. Annu Rev. Immunol. 2007; 25: 561–586, doi: 10.1146/annurev.immunol.25.022106.141656.
  • 76. Micheau O., Tschopp J. Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes. Cell. 2003; 114(2): 181–190, doi: 10.1016/S0092-8674(03)00521-X.
  • 77. Brustolim D., Ribeiro-dos-Santos R., Kast R.E., Altschuler E.L., Soares M.B.P. A new chapter opens in anti-inflammatory treatments:The antidepressant bupropion lowers production of tumor necrosis factor-alpha and interferon-gamma in mice. Int. Immunopharmacol. 2006; 6(6): 903–907, doi: 10.1016/j.intimp.2005.12.007.
  • 78. Yu B., Becnel J., Zerfaoui M., Rohatgi R., Boulares A.H., Nichols C.D. Serotonin 5-Hydroxytryptamine2A Receptor Activation Suppresses Tumor Necrosis Factor-Induced Inflammation with Extraordinary Potency. J. Pharmacol. Exp. Ther. 2008; 327(2): 316–323, doi: 10.1124/jpet.108.143461.
  • 79. Sharma J., Gray K.P., Harshman L.C., Evan C., Nakabayashi M., Fichorova R., Rider J., Mucci L., Kantoff P.W., Sweeney C.J. Elevated IL-8, TNF-α, and MCP-1 in men with metastatic prostate cancer starting androgen-deprivation therapy (ADT) are associated with shorter time to castration-resistance and overall survival. Prostate 2014; 74(8): 820–828, doi: 10.1002/pros.22788.
  • 80. Lv L., Yuan J., Huang T., Zhang C., Zhu Z., Wang L., Jiang G., Zeng F.Stabilization of Snail by HIF-1α and TNF-α is required for hypoxia-induced invasion in prostate cancer PC3 cells. Mol. Biol. Rep. 2014; 41(7): 4573–4582, doi: 10.1007/s11033-014-3328-x.
  • 81. Abe Vicente M., Donizetti Silva T., Barão K., Vitor Felipe A., Oyama Missae L., Manoukian Forones N. The influence of nutritional status and disease on adiponectin and TNF-α; levels in colorectal cancer patients. Nutr. Hosp. 2014; 30(1): 140–146, doi: 10.3305/nh.2014.30.1.7132.
  • 82. Li Z., Li S., Sun Y., Liu Y., Li W.L., Yang L., Duan Y., Li J., Guo H., Zou T.N., Li Y., Wang K.H. TNF-α -308 A allele is associated with an increased risk of distant metastasis in rectal cancer patients from Southwestern China. PLoS One. 2017; 12(6): e0178218, doi: 10.1371/journal.pone.0178218.
  • 83. Miao Z., Wang K., Wang X., Zhang C., Xu Y.. TNF-α-308G/A polymorphism and the risk of colorectal cancer: A systematic review and an updated meta-analysis. J. BUON. 2018; 23(6): 1616–1624, http://www.ncbi.nlm.nih.gov/pubmed/30610785.
  • 84. Joshi R.K., Lee S. Obesity Related Adipokines and Colorectal Cancer: A Review and Meta-Analysis. Asian Pacific J. Cancer Prev. 2014; 15(1): 397–405, doi: 10.7314/APJCP.2014.15.1.397.
  • 85. Giorgini S., Trisciuoglio D., Gabellini C. Desideri M., Castellini L., Colarossi C., Zangemeister-Wittke U., Zupi G., Del Bufalo D. Modulation of bcl-xL in Tumor Cells Regulates Angiogenesis through CXCL8 Expression. Mol. Cancer Res. 2007; 5(8): 761–771, doi: 10.1158/1541-7786.MCR-07-0088.
  • 86. Li L., Dragulev B., Zigrino P., Mauch C., Fox J.W. The invasive potential of human melanoma cell lines correlates with their ability to alter fibroblast gene expression in vitro and the stromal microenvironment in vivo. Int. J. Cancer. 2009; 125(8): 1796–1804, doi: 10.1002/ijc.24463.
  • 87. Waugh D.J.J., Wilson C. The Interleukin-8 Pathway in Cancer. Clin. Cancer Res. 2008; 14(21): 6735–6741, doi: 10.1158/1078-0432.CCR-07-4843.
  • 88. Ma J., Ren Z., Ma Y., Xu L., Zhao Y., Zheng C., Fang Y., Xue T., Sun B., Xiao W. Targeted Knockdown of EGR-1 Inhibits IL-8 Production and IL-8-mediated Invasion of Prostate Cancer Cells through Suppressing EGR-1/NF-κB Synergy. J. Biol. Chem. 2009; 284(50): 34600–34606, doi: 10.1074/jbc.M109.016246.
  • 89. Lehrer S., Diamond E.J., Mamkine B., Stone N.N., Stock R.G. Serum Interleukin-8 is Elevated in Men with Prostate Cancer and Bone Metastases. Technol. Cancer Res. Treat. 2004; 3(5): 411, doi: 10.1177/153303460400300501.
  • 90. Aalinkeel R., Nair B., Chen C., Mahajan S.D., Reynolds J.L., Zhang H., Sun H., Sykes D.E., Chadha K.C., Turowski S.G., Bothwell K.D., Seshadri M., Cheng C., Schwartz S.A. Nanotherapy silencing the interleukin-8 gene proregression of prostate cancer by inhibition of angiogenesis. Immunology. 2016; 148(4): 387–406, doi: 10.1111/imm.12618.
  • 91. Dehghani M., Mostafavi-Pour Z., Lotfi M., Shakeri S. Evaluation of plasma interleukin-8 concentration in patients with prostate cancer and benign prostate hyperplasia. Iran J. Immunol. 2009; 6(2): 92–98, doi: IJIv6i2A5.
  • 92. Murphy C., McGurk M., Pettigrew J., Santinelli A., Mazzucchelli R., Johnston P.G., Montironi R., Waugh D.J. Nonapical and Cytoplasmic Expression of Interleukin-8, CXCR1, and CXCR2 Correlates with Cell Proliferation and Microvessel Density in Prostate Cancer. Clin. Cancer Res. 2005; 11(11): 4117–4127, doi: 10.1158/1078-0432.CCR-04-1518.
  • 93. Caruso D.J., Carmack A.J.K., Lokeshwar V.B., Duncan R.C., Soloway M.S., Lokeshwar B.L. Osteopontin and Interleukin-8 Expression is Independently Associated with Prostate Cancer Recurrence. Clin. Cancer Res. 2008; 14(13): 4111–4118, doi: 10.1158/1078-0432.CCR-08-0738.
  • 94. Neveu B., Moreel X., Deschênes-Rompré M.P., Bergeron A., LaRue H., Ayari C., Fradet Y., Fradet V. IL-8 secretion in primary cultures of prostate cells is associated with prostate cancer aggressiveness. Res. Rep. Urol. 2014; 6: 27–34, doi: 10.2147/RRU.S58643.
  • 95. Xu Y., Josson S., Fang F., Oberley T.D., St Clair D.K., Wan X.S., Sun Y., Bakthavatchalu V., Muthuswamy A., St Clair W.H. RelB Enhances Prostate Cancer Growth: Implications for the Role of the Nuclear Factor- κB Alternative Pathway in Tumorigenicity. Cancer Res. 2009; 69(8): 3267–3271, doi: 10.1158/0008-5472.CAN-08-4635.
  • 96. Xu Y., Fang F., St Clair D.K., St Clair W.H. Inverse Relationship between PSA and IL-8 in Prostate Cancer: An Insight into a NF-κB-Mediated Mechanism. Kyprianou N, ed. PLoS One. 2012; 7(3): e32905, doi: 10.1371/journal.pone.0032905.
  • 97. Golovine K., Uzzo R.G., Makhov P., Crispen P.L., Kunkle D., Kolenko V.M. Depletion of intracellular zinc increases expression of tumorigenic cytokines VEGF, IL-6 and IL-8 in prostate cancer cells via NF-κB-dependent pathway. Prostate 2008; 68(13): 1443–1449, doi: 10.1002/pros.20810.
  • 98. Singh R.K., Lokeshwar B.L. The IL-8-Regulated Chemokine Receptor CXCR7 Stimulates EGFR Signaling to Promote Prostate Cancer Growth. Cancer Res. 2011; 71(9): 3268–3277, doi: 10.1158/0008-5472.CAN-10-2769.
  • 99. Maxwell P.J., Gallagher R., Seaton A., Wilson C., Scullin P., Pettigrew J., Stratford I.J., Williams K.J., Johnston P.G., Waugh D.J. HIF-1 and NF-κB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell surival in hypoxic prostate cancer cells. Oncogene. 2007; 26(52): 7333–7345, doi: 10.1038/sj.onc.1210536.
  • 100. Cui G., Yuan A., Goll R., Vonen B., Florholmen J. Dynamic changes of interleukin-8 network along the colorectal adenoma–carcinoma sequence. Cancer Immunol. Immunother. 2009; 58(11): 1897–1905, doi: 10.1007/s00262-009-0702-y.
  • 101. Di Salvatore M., Pietrantonio F., Orlandi A., Del Re M., Berenato R., Rossi E., Caporale M., Guarino D., Martinetti A., Basso M., Mennitto R., Santonocito C., Mennitto A., Schinzari G., Bossi I., Capoluongo E., Danesi R., de Braud F., Barone C. IL-8 and eNOS polymorphisms predict bevacizumab-based first line treatment outcomes in RAS mutant metastatic colorectal cancer patients. Oncotarget. 2017; 8(10): 16887–16898, doi: 10.18632/oncotarget.14810.
  • 102. Marisi G., Scarpi E., Passardi A., Nanni O., Pagan F., Valgiusti M., Casadei Gardini A., Neri L.M., Frassineti G.L., Amadori D., Ulivi P.IL-8 and thrombospondin-1 as prognostic markers in patients with metastatic colorectal cancer receiving bevacizumab. Cancer Manag Res. 2018; 10: 5659–5666, doi: 10.2147/CMAR.S181570.
  • 103. Jin W., Xu J.M., Xu W., Gu D., Li P. Diagnostic value of interleukin-8 in colorectal cancer: A case-control study and meta-analysis. World J. Gastroenterol. 2014; 20(43): 16334, doi: 10.3748/wjg.v20.i43.16334.
  • 104. Xia W., Chen W., Zhang Z., Wu D., Wu P., Chen Z., Li C., Huang J. Prognostic Value, Clinicopathologic Features and Diagnostic Accuracy of Interleukin-8 in Colorectal Cancer: A Meta-Analysis. Krieg A, ed. PLoS One. 2015; 10(4): e0123484, doi: 10.1371/journal.pone.0123484.
  • 105. Wigmore S., Maingay J., Fearon K., Ross J. Endogenous production of IL-8 by human colorectal cancer cells and its regulation by cytokines. Int. J. Oncol. 2001, doi: 10.3892/ijo.18.3.467.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-af0b2324-93aa-41ca-a6e4-b58e7802962e
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.