PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 14 | 3 | 175–180
Article title

Rola aktywności ruchowej w zapobieganiu zaburzeniom poznawczym

Content
Title variants
EN
Role of physical activity in preventing cognitive disorders
Languages of publication
EN PL
Abstracts
EN
Regular physical activity induces a range of adjustment changes, particularly in the circulatory system and metabolism. Numerous publications on single exertion and increased physical activity more and more frequently confirm their positive influence on the shaping of cognitive functions. Anatomic and functional changes, such as increased cerebral blood flow, angiogenesis and neurogenesis as well as increased volume of the grey matter in the frontal and temporal cortices, are the basis of this positive influence. Physical exertion stimulates the production of trophic factors, among which the brain-derived neurotrophic factors and insulin-like growth factors are crucial for cognitive processes, synaptic plasticity as well as for the improvement of the neurogenesis signalling pathways and vascular functioning. Physical activity induces enhanced expansion of the brain-derived neurotrophic factor. This has a positive influence on energy processes and activates numerous cerebral energy centres which positively modify the synaptic potential for processing information that is important for developing cognitive functions. Exertion reduces inflammation by decreasing the blood concentration of proinflammatory cytokines that can contribute to the development of neurodegenerative processes. Moreover, it reduces metabolic syndrome risk factors, particularly hypertension and insulin resistance thus decreasing the risk of cognitive dysfunctions, improving brain functioning, delaying the onset and decelerating the development of disorders in neurodegenerative syndromes, including Alzheimer’s and Parkinson’s diseases. Taking these mechanisms into consideration, it seems that physical activity is indispensable for maintaining normal cognitive functions at any age.
PL
Regularna aktywność ruchowa wywołuje szereg zmian adaptacyjnych, zwłaszcza w układzie krążenia i przemianie materii. W licznych pracach na temat pojedynczego wysiłku i wzmożonej aktywności fizycznej pojawia się coraz więcej potwierdzeń ich korzystnego wpływu na kształtowanie funkcji poznawczych. U podstaw mechanizmów związanych z tym wpływem leżą zmiany anatomiczne i funkcjonalne, m.in. zwiększenie przepływu krwi przez mózg, angiogenezy i neurogenezy, objętości istoty szarej w korze czołowej i skroniowej. Wysiłek pobudza wydzielanie czynników troficznych, wśród których dla procesów poznawczych, plastyczności synaptycznej, poprawy szlaków sygnałowych neurogenezy i funkcji naczyniowych kluczowe są czynnik troficzny pochodzenia mózgowego i insulinopodobny czynnik wzrostowy. Aktywność ruchowa wywołuje wzmożoną ekspresję czynnika troficznego pochodzenia mózgowego, co pozytywnie wpływa na procesy energetyczne i aktywuje w mózgu wiele układów energetycznych, które korzystnie modyfikują potencjał synaptyczny przetwarzania informacji ważnych w kształtowaniu funkcji poznawczych. Wysiłek redukuje stan zapalny przez obniżenie we krwi stężenia cytokin prozapalnych, mogących się przyczyniać do rozwoju procesów neurodegeneracyjnych. Redukuje czynniki ryzyka zespołu metabolicznego, a zwłaszcza nadciśnienie i insulinooporność, więc zmniejsza ryzyko wystąpienia zaburzeń czynności poznawczych, poprawia funkcjonowanie mózgu, opóźnia początek i spowalnia rozwój zaburzeń w chorobach neurodegeneracyjnych, a wśród nich w chorobie Alzheimera i chorobie Parkinsona. Za sprawą wymienionych mechanizmów aktywność ruchowa wydaje się niezbędna do zachowania prawidłowych funkcji poznawczych w każdym wieku.
Discipline
Publisher

Year
Volume
14
Issue
3
Pages
175–180
Physical description
Contributors
  • Zakład Fizjologii Stosowanej, Instytut Medycyny Doświadczalnej i Klinicznej im. M. Mossakowskiego, Polska Akademia Nauk, ziemba@imdik.pan.pl
References
  • Ahlskog JE, Geda YE, Graff-Radford NR et al.: Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clin Proc 2011; 86: 876-884.
  • Buck SM, Hillman CH, Castelli DM: The relation of aerobic fitness to stroop task performance in preadolescent children. Med Sci Sports Exerc 2008; 40: 166-172.
  • Bullitt E, Rahman FN, Smith JK et al.: The effect of exercise on the cerebral vasculature of healthy aged subjects as visualized by MR angiography. AJNR Am J Neuroradiol 2009; 30: 1857-1863.
  • Burdette JH, Laurienti PJ, Espeland MA: Using network science to evaluate exercise-associated brain changes in older adults. Front Aging Neurosci 2010; 2: 23.
  • Cassilhas RC, Viana VA, Grassmann V et al.: The impact of resistance exercise on the cognitive function of the elderly. Med Sci Sports Exerc 2007; 39: 1401-1407.
  • Chmura J, Krysztofiak H, Ziemba AW et al.: Psychomotor performance during prolonged exercise above and below the blood lactate threshold. Eur J Appl Physiol Occup Physiol 1998; 77: 77-80.
  • Colcombe SJ, Erickson KI, Scalf PE et al.: Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci 2006; 61: 1166-1170.
  • Cotman CW, Berchtold NC: Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 2002; 25: 295-301.
  • Cotman CW, Berchtold NC, Cristie LA: Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 2007; 30: 464-472.
  • Gleeson M, Bishop NC, Stensel DJ et al.: The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 2011; 11: 607-615.
  • Gomez-Pinilla F, Hillman C: The influence of exercise on cognitive abilities. Compr Physiol 2013; 3: 403-428.
  • Hillman CH, Belopolsky AV, Snook EM et al.: Physical activity and executive control: implications for increased cognitive health during older adulthood. Res Q Exerc Sport 2004; 75: 176-185.
  • Hotting K, Roder B: Beneficial effect of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev 2013; 37: 2243-2257.
  • Lambourne K, Tomporowski P: The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Res 2010; 1341: 12-24.
  • Liu HL, Zhao G, Zhang H et al.: Long-term treadmill exercise inhibits the progression of Alzheimer’s disease-like neuropathology in the hippocampus of APP/PS1 transgenic mice. Behav Brain Res 2013; 256: 261-272.
  • Liu-Ambrose T, Nagamatsu LS, Voss MW et al.: Resistance training and functional plasticity of the aging brain: a 12-month randomized controlled trial. Neurobiol Aging 2012; 33: 1690-1698.
  • McMorris T, Sproule J, Turner A et al.: Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: a meta-analytical comparison of effects. Physiol Behav 2011; 102: 421-428.
  • Paterson DH, Warburton DE: Physical activity and functional limitations in older adults: a systematic review related to Canada’s Physical Activity Guidelines. Int J Behav Nutr Phys Act 2010; 7: 38.
  • Pereira AC, Huddleston DE, Brickman AM et al.: An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 2007; 104: 5638-5643.
  • Phillips C, Baktir MA, Srivatsan M et al.: Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Front Cell Neurosci 2014; 8: 170.
  • van Praag H: Exercise and brain: something to chew on. Trends Neurosci 2009; 32: 283-289.
  • Rasmussen P, Brassard P, Adser H et al.: Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 2009; 94: 1062-1069.
  • Seifert T, Brassard P, Wissenberg M et al.: Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol 2010; 298: R372-R377.
  • Sibley BA, Etnier JL: The relationship between physical activity and cognition in children: a meta-analysis. Pediatr Exerc Sci 2003; 15: 243-256.
  • Smiley-Oyen AL, Lowry KA, Francois SJ et al.: Exercise, fitness, and neurocognitive function in older adults: the “selective improvement” and “cardiovascular fitness” hypotheses. Ann Behav Med 2008; 36: 280-291.
  • Sofi F, Valecchi D, Bacci D et al.: Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J Intern Med 2011; 269: 107-117.
  • Swardfager W, Herrmann N, Marzolini S et al.: Brain derived neurotrophic factor, cardiopulmonary fitness and cognition in patients with coronary artery disease. Brain Behav Immun 2011; 25: 1264-1271.
  • Voelcker-Rehage C, Godde B, Staudinger UM: Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults. Front Hum Neurosci 2011; 5: 26.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-ae118ee4-e7c3-4960-978d-041f2d5ce65a
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.