PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 129 | 255-262
Article title

Stapp parameterization and scattering phases for coupled states

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Variable phase approach is viewed for two-channel scattering. The search of the scattering phases and mixing parameter for coupled states 3S1–3D1 using Stapp parameterization is carried out. The nucleon-nucleon potential in the coordinate representation is used for numerical calculations. The influence of the choice of a numerical method (method Euler and methods Runge-Kutta) on the calculations of scattering phases and the mixing parameter is taken into account.
Discipline
Year
Volume
129
Pages
255-262
Physical description
Contributors
author
  • Department of Theoretical Physics, Uzhgorod National University, 54, Voloshyna St., Uzhgorod, UA-88000, Ukraine
References
  • [1] M. Naghdi, Comparing Some Nucleon-Nucleon Potentials. Phys. Part. Nucl. Lett. 11(4) (2014) 410-431
  • [2] M. Naghdi, Nucleon–Nucleon Interaction: A Typical/Concise Review. Phys. Part. Nucl. 45(5) (2014) 924-971
  • [3] F. Huang, W.L. Wang, Nucleon-nucleon interaction in a chiral SU(3) quark model revisited. Phys. Rev. D. 98 (2018) 074018
  • [4] E. Epelbaum, J. Gegelia, Weinberg’s approach to nucleon-nucleon scattering revisited. Phys. Lett. B. 716 (2012) 338-344
  • [5] I. Dubovyk, O. Shebeko, The Method of Unitary Clothing Transformations in the Theory of Nucleon-Nucleon Scattering. Few-Body Syst. 48 (2010) 109-142
  • [6] V.V. Babikov, The phase-function method in quantum mechanics. Moscow, Science, 1988.
  • [7] F. Calogero, Variable phase approach to potential scattering. New York and London, Academic Press, 1967.
  • [8] V.І. Zhaba, The phase-functions method and scalar amplitude of nucleon-nucleon scattering. Int. J. Mod. Phys. E. 25(11) (2016) 1650088
  • [9] J.M. Blatt,V.F. Weisskopf, Theoretical nuclear physics. New York, Wiley, 1958.
  • [10] V.I. Zhaba, Asymptotics of phase and wave functions. Uzhhorod Univ. Scien. Herald. Ser. Phys. 40 (2016) 106-112
  • [11] J.L. McHale, R.M. Thaler. A Variational Principle for Tensor Forces. Phys. Rev. 98(1) (1955) 273
  • [12] J.M. Blatt, L.C. Biedenharn, Neutron-Proton Scattering with Spin-Orbit Coupling. I. General Expressions. Phys. Rev. 86(3) (1952) 399-404
  • [13] H.P. Stapp, T.I. Ypsilantis, N. Metropolis, Phase-Shift Analysis of 310-Mev Proton-Proton Scattering Experiments. Phys. Rev. 105(1) (1957) 302-310
  • [14] A.V. Matveenko, L.I. Ponomarev, M.P. Feifman, Slow Collisions in the System of Three Bodies Interacting by Coulomb Law. Preprint Р4-8232, JINR, Dubna, 1974, 35 p.
  • [15] R.V. Reid, Local phenomenological nucleon-nucleon potentials. Ann. Phys. 50(3) (1968) 411-448
  • [16] G.E. Brown, A.D. Jackson, The nucleon-nucleon interaction. Moscow, Atomizdat, 1979.
  • [17] N.N. Kalitkin, Numerical methods. Moscow, Science, 1978.
  • [18] А.Е. Mudrov, Numeral methods for PECM in languages Basic, Fortran and Pascal. Tomsk, RASKO, 1991.
  • [19] V.I. Rakitin, V.E. Pervushin, Practical guidance on methods of calculations with appendix of programs for personal computers. Moscow, Higher School, 1998.
  • [20] А.N. Tikhonov, A.V. Goncharovsky, V.V.Stepanov et al., Numerical methods of the decision of incorrect tasks. Moscow, Science, 1990.
  • [21] N.S. Bahvalov, N.P. Zhidkov, G.M. Kobelkov, Numerical methods. Saint Petersburg, Fizmatlit, 2002
Document Type
short_communication
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-ad9fa5d7-ed01-4aed-a9f3-2f30ec0b8d52
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.