Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2025 | 63 | 2 | 310-330

Article title

Effects of Bambara groundnut [Vigna subterranea (L.) Verdc.] interaction with Rhizobium spp. for viable yield crop advancement

Content

Title variants

Languages of publication

EN

Abstracts

EN
Viable yield crop remains a preference towards avoiding food insecurity in any country, yet, the fertility of most of the soils in Africa is low, which is the main reason why sustainability does not receive enough support by any means. Various agricultural systems have been carried out to solve the challenges, but many restrictions have been recorded, thereby resulting to a constant little or no crop of local basic food crops in several countries in Africa. Scientists and farmers have become interested in the symbiotic relationships between “Legumes” and “Rhizobia” because of their effectiveness in nitrogen fixation as a true alternative. The blend of Nitrogen Fixing Legumes (NFL) with novel essential reverence yields among small-holder farming structures is possible to improve the fertility of soil. The seed of legumes, in particular, Bambara groundnut (i.e. African Bambara groundnut) creates nitrogen fixing symbiotic interaction together with the bacteria of root nodule collectively termed “Rhizobia” in such a manner that sufficient nitrogen are released for legume and diverse yields during inter-crop or crop rotation. Through this method, it is expected to be considered as a food crop that is necessary for food security thereby giving serious considerations on its usefulness and healthy benefits. As a discourse of significance, it is expected to be referred as a cash crop, as well as an essential preference for promoting the soil's nitrogen fertility.

Year

Volume

63

Issue

2

Pages

310-330

Physical description

Contributors

  • Department of Microbiology, North-West University, Potchefstroom, South Africa
  • Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
  • Department of Microbiology, North-West University, Potchefstroom, South Africa

References

  • [1] Abate, T., Alene, A.D., Bergvinson, D., Shiferaw, B., Silim, S., Orr, A. & Asfaw, S. (2011). Tropical grain legumes in Africa and South Asia: knowledge and opportunities (p. 116). Nairobi: ICRISAT.
  • [2] Ahmed, G. M. & Abdallah, A. A. (2010). Nutritive evaluation of Bambara groundnut (Vigna subterranean) pods, seeds and Hulls as Animal Feeds. J. of Appl. Sci. Res. 6, 383-386
  • [3] Ajiboye, A. A. (2015). Efficacy of mycorrhizal inoculations on seed germination and plant growth of Bambara groundnut, Vigna subterranean (TVsu 283). Afr. J. Agric. Res. 10, 1022-1030
  • [4] Alhassan, M, A., Sule, M., Abubakar, H., Abdulmumin, T. & Dangambo, M. (2014). Fatty acid composition of Bambara groundnut (Vigna subterranean (L) Verdc) grown in Madobi, Kano State-Nigeria. European Scientific Journal, 10, 24
  • [5] Argaw, A. (2014). Symbiotic effectiveness of inoculation with Bradyrhizobium isolates on soybean [Glycine max (L.) Merrill] genotypes with different maturities. SpringerPlus, 3, 753. https://doi.org/10.1186/2193-1801-3-753
  • [6] Bado, B.V., Bationo, A., Lompo, F., Traore, K., Sedogo, M.P., Cescas, M.P. (2012). Long Term Effects of Crop Rotations with Fallow or Groundnut on Soil Fertility and Succeeding Sorghum Yields in the Guinea Savannah of West Africa. In: Bationo, A., Waswa, B., Kihara, J., Adolwa, I., Vanlauwe, B., Saidou, K. (eds) Lessons learned from Long-term Soil Fertility Management Experiments in Africa. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2938-4_2
  • [7] Bakhoun, N., Le roux, C., Diouf, D., Kane, A., Ndoye, F., Fall, D. & Galiana, A. (2014). Distribution and Diversity of Rhizobial Populations Associated with Acacia senegal (L) Wild. Provenances in Senegalese Arid and Semi-arid Regions. Open Journal of Forestry, 4, 136
  • [8] Baral, B. & Izaguirre-Mayoral, M. L. (2016). Early signaling, synthesis, transport and metabolism of ureides. J. Plant Physiol. 193, 97-109
  • [9] Bargaz, A., Faghire, M., Farissi, M., Drevon, J.-J. & Ghoulam, C. (2013). Oxidative stress in the root nodules of Phaseolus vulgaris is induced under conditions of phosphorus deficiency. Acta Physiol. Plant 35, 1633-1644
  • [10] Bambara, S. & Ndakidemi, P. A. (2010). Phaseolus vulgaris response to Rhizobium inoculation, lime and molybdenum in selected low pH soil in Western Cape, South Africa. Afr. J. Agric. Res. 5, 1804-1811
  • [11] Bamishaiye, J., Adeegbola, O. & Bamishaiye, E. (2011). Advances in Agricultural Biotechnology. www.woaj.org/AAB, 1, 60-72
  • [12] BamshaiyeE, O., Adegbola, J. & Bamshaiye, E. (2011b). Bambara groundnut: An under-utilized nut in Africa. Advances in Agricultural Biotechnology 1, 60-72
  • [13] Begemann, F., Mukema, I. & Obel-lawson, E. (2002). Promotion of Bambara groundnut (Vigna subterranea): latest developments of Bambara groundnut research. Proceedings of the Second International Workshop of the International Bambara Groundnut Network (BAMNET), 23-25 September 1998, CSIR, Accra, Ghana, IPGRI
  • [14] Belane, A. K. & Dakora F. D. (2009). Measurement of N2 fixation in 30 cowpea (Vigna unguiculata L. Walp.) genotypes under field conditions in Ghana, using the 15N natural abundance technique. Symbiosis, 48, 47-56
  • [15] Belane, A. K. & Dakora, F. D. (2011). Photosynthesis, symbiotic N and C accumulation in leaves of 30 nodulated cowpea genotypes grown in the field at Wa in the Guinea savanna of Ghana. Field Crops Res. 124, 279-287
  • [16] Benson, O., Beatrice, A., Regina, N., Koech, P., Skilton, R. A. & Francesca, S. (2015b). Morphological, genetic and symbiotic characterization of root nodule bacteria isolated from Bambara groundnuts (Vigna subterranea L. Verdc) from soils of Lake Victoria basin, western Kenya. J. Appl. Biol. Biotech. 3, 001-010
  • [17] Beres, S. B., Carroll, R. K., Shea, P. R., Sitkiewicz, I., Martinez-Gutierrez, J. C., Low, D. E., Mcgeer, A., Willey, B. M., Green, K. & Tyrrell, G. J. (2010). Molecular complexity of successive bacterial epidemics deconvoluted by comparative pathogenomics. Proceedings of the National Academy of Sciences, 107, 4371-4376
  • [18] Berchie, J., Sarkodie-Addo, J., Adu-Dapaah, H., Agyemang, A., Addy, S., Asare, E. & Donkor, J.(2010). Yield evaluation of three early maturing Bambara groundnut (Vigna subterranea L. Verdc) landraces at the CSIR-Crops Research Institute, Fumesua-Kumasi, Ghana. J. Agron. 9, 175-179
  • [19] Brisson, N., Launay, M., Mary, B. & Beaudoin, N. (2009). Nitrogen transformations. Conceptual basis, formalisations and parameterization of the STICS crop model, Quæ, Versailles Cedex, France, 141-165
  • [20] Bruno, I. P., Reichard, T, K., Bortolotto, R. P., Pinto, V. M., Bacchi, O. O. S., Dourado-neto, D. & Unkovich, M. J. (2015). Nitrogen balance and fertigation use efficiency in a field coffee crop. J. Plant Nutr. 38, 2055-2076
  • [21] Bunde, M. & OsundahunsiI, F, & Akinoso, R. (2010), Supplementation of biscuit using rice bran and soyabean flour. AJFAND, 10, 9
  • [22] Chianu, J., Chianu, J. & Mairura, F. (2012). Mineral fertilizers in the farming systems of Sub-Saharan Africa. A Review. Agron. Sustain. Dev. 32, 545-566
  • [23] Cinar, S. & Hatipoglu, R. (2014). Forage Yield and Botanical Composition of Mixtures of Some Perennial Warm Season Grasses with Alfalfa (Medicago sativa L.) Under Mediterranean Conditon. Turk J Field Crops, 19, 13-18
  • [24] De Ponti, T., Rijk, B. & Van Ittersum, M. K. (2012). The crop yield gap between organic and conventional agriculture. Agric. Syst. 108, 1-9
  • [25] Faghire, M., Bargaz, A., Farissi, M., Palma, F., Mandri, B., Luch, C., Garcia, N., Herrera-Cervera, J., Oufdou, K. & Ghoulam, C. (2011). Effect of salinity on nodulation, nitrogen fixation and growth of common bean (Phaseolus vulgaris) inoculated with rhizobial strains isolated from the Haouz region of Morocco. Symbiosis, 55, 69-75
  • [26] Falade, K. O. & Nwajei, C. P. (2015). Physical, proximate, functional and pasting properties of four non‐and γ‐irradiated Bambara groundnut (Vigna subterranean) cultivars. Int. J. Food Sci. Tech. 50, 640-651
  • [27] FAO. (2003). Trade reforms and food security: Conceptualizing the linkages, London, Kluwer Academic Publishers, FAO, UN.
  • [28] Fasoyiro, S. B., Ajibade, A.J., Omole, O.N., Adeniyan & Farinde, E. O. (2004). Proximate, minerals and anti-nutritional factors of some under-utilized grain legumes in south western Nigeria. Nutrition of Food Science, 36, 18-23
  • [29] Green, N. M., Zhang, S., Porcella, S. F., Nagiec, M. J., Barbian, K. D., Beres, S. B., Lefebvre, R. B. & Musser, J. M. (2005). Genome sequence of a serotype M28 strain of group a Streptococcus: potential new insights into Puerperal sepsis and bacterial disease specificity. J. Infect. Dis. 192, 7
  • [30] Greenhalgh, P. (2000). The market potential for Bambara groundnut. Natural Resources Institute (NRI), University of Greenwich, Chatham Maritime, Kent ME4 4TB UK, 33.
  • [31] Hannum, E., Liu, J. & Frongillo, E. A. 2014). Poverty, food insecurity and nutritional deprivation in rural China: Implications for children's literacy achievement. Int. J. Educ. Dev. 34, 90-97
  • [32] Kadiata, B. D., Schubert, S. & Yan, F. (2012). Assessment of different inoculants of Bradyrhizobium japonicum on nodulation, potential N2 fixation and yield performance of soybean (Glycine max L.). J. Anim. Plant Sci. 13, 1704-1713
  • [33] Kamanga, B. C., Kanyama-Phiri, G. Y., Waddington, S. R., Almekinders, C. J. & Giller, K. E. (2014). The evaluation and adoption of annual legumes by smallholder maize farmers for soil fertility maintenance and food diversity in central Malawi. Food Secur. 6, 45-59
  • [34] Kumar, K., Rai, P., Kumar, A., Singh, B. & Ak, C. (2014). Study on the performance of groundnut (Arachis hypogea L) genotypes for quantitative traits in Allahabad region. Carib J. Sci. Tech. 2, 564-569
  • [35] Lindstrom, K., Murwira, M., Willems, A. & Altier, N. (2010). The biodiversity of beneficial microbe-host mutualism: the case of rhizobia Research in Microbiology. Int. J. Mol. Sci. 161, 453-463
  • [36] Magulu, K. & Kabambe, V. H. (2015). Fodder production, yield and nodulation of some elite cowpea (Vigna unguiculata [L.] Walp.) lines in central Malawi. Afr. J. Agric. Res. 10, 2480-2485
  • [37] Makoi, J. H., Bambara, S. & Ndakidemi, P. A. (2013). Rhizobium inoculation and the supply of molybdenum and lime affect the uptake of macro-elements in common bean ('P. Vulgaris L.') plants. Aust. J. Crop Sci. 7, 784-793
  • [38] Manzeke, M. G. (2013. Exploring the effectiveness of different fertilizer formulations in alleviating zinc deficiency in smallholder maize production systems in Zimbabwe. University of Zimbabwe.
  • [39] Margni, M., Rossier, D., Crettaz, P. & Jolliet, O. (2002). Life cycle impact assessment of pesticides on human health and ecosystems. Agric-Eco-Environ. 93, 279-392
  • [40] Mazahib, A., Nuha, M., Salawa, I. & Babiker, E. (2013). Some nutritional attributes of Bambara groundnut as influenced by domestic processing. Int. Food Res. J. 20, 1165-1171
  • [41] Minka, S. R. & Bruneteau, M. (2000). Partial chemical composition of Bambara pea [Vigna subterranea (L.) Verde]. Food Chem. 68, 273-276
  • [42] Mohale, K. C., Belane, A. K. & Dakora, F. D. (2014). Symbiotic N nutrition, C assimilation, and plant water use efficiency in Bambara groundnut (Vigna subterranea L. Verdc) grown in farmers’ fields in South Africa, measured using 15N and 13C natural abundance. Biol. Fertil. Soils, 50, 307-319
  • [43] Mubaiwa, J., Fogliano, V., Chidewe, C., & Linnemann, A. R. (2016). Hard-to-cook phenomenon in bambara groundnut (Vigna subterranea (L.) Verdc.) processing: Options to improve its role in providing food security. Food Reviews International, 33(2), 167-194. https://doi.org/10.1080/87559129.2016.1149864
  • [44] Musa, M., Massawe, F., Mayes, S., Alshareef, I., & Singh, A. (2016). Nitrogen Fixation and N-Balance Studies on Bambara Groundnut (Vigna subterranea L. Verdc) Landraces Grown on Tropical Acidic Soils of Malaysia. Communications in Soil Science and Plant Analysis, 47(4), 533-542. https://doi.org/10.1080/00103624.2016.1141928
  • [45] Nezomba, H., Tauro, T., Mtambanengwe, F. & Mapfumo, P. (2010). Indigenous legume fallows (Indi fallows) as an alternative soil fertility resource in smallholder maize cropping systems. Field Crops Res. 115, 149-157
  • [46] Ndakidemi, P. & Dakora, F. (2011). Changes in δ15N and N Nutrition in Nodulated Cowpea (Vigna unguiculata L. Walp.) and Maize (Zea mays L.) Grown in Mixed Culture with Exogenous P Supply. Innovations as Key to the Green Revolution in Africa. Springer.
  • [47] Ndidi, U. S., Ndidi, C. U., Aimola, I. A., Bassa, O. Y., Mankilik, M. & Adamu, Z. (2014). Effects of processing (boiling and roasting) on the nutritional and anti-nutritional properties of Bambara groundnuts (Vigna subterranea [L.] Verdc.) from Southern Kaduna, Nigeria. J. Food Process., 2014, 9.
  • [48] Ngakou, A., Moctar, M., Njintang, N. Y. & Tamo, M. (2011). Cowpea quality seed indicators as influenced by field application of selected biofertilizers and mycoinsecticide in three agroecological zones of Cameroon. Commun. Soil Sci. Plant Anal. 42, 1276-1288
  • [49] Norgrove, L. & Hauser, S. (2016). Biophysical criteria used by farmers for fallow selection in West and Central Africa. Ecol. Indic. 61, 141-147
  • [50] Nyemba, R. C. & Dakora, F. D. (2010). Evaluating N2 fixation by food grain legumes in farmers’ fields in three agro-ecological zones of Zambia, using 15N natural abundance. Biol. FertiL. Soils. 46, 461-470
  • [51] Omokanye, A. (2001). Research Note: Forage yield and chemical composition of centro (Centrosema pubescens) in the year of establishment at Shika, Nigeria. Tropical Grasslands, 35, 53-57
  • [52] Pedulosi, S., Hodgkin, T. & Williams, J. (2002). Underlined crops: trends, challenges and opportunities in the 21st century. In Wallingford, UK: CAB International Plant Genetic Resources Institute (IPGRI).
  • [53] Pule‐Meulenberg, F. & Dakora, F. D. (2015). Nodule functioning and symbiotic efficiency of cowpea and soybean varieties in Africa, in Biological Nitrogen Fixation (ed F. J. de Bruijn), John Wiley & Sons, Inc, Hoboken, NJ, USA. DOI: 10.1002/9781119053095
  • [54] Pypers, P., Sanginga, J.-M., Kasereka, B., Walangulu, M. & vanlauwe. (2011). Increased productivity through integrated soil fertility management in cassava–legume intercropping systems in the highlands of Sud-Kivu, DR Congo. Field Crops Res. 120, 76-85
  • [55] Rajwar, A., Sahgal, M., Johri, B.N. (2013). Legume–Rhizobia Symbiosis and Interactions in Agroecosystems. In: Arora, N. (eds) Plant Microbe Symbiosis: Fundamentals and Advances. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1287-4_9
  • [56] Rosenstock, T., Tully, K., Arias-Navarro, C., Neufeldt, H., Butterbach-Bahl, K. & Verchot, L. (2014). Agroforestry with N 2-fixing trees: sustainable development's friend or foe? COSUST, 6, 15-21
  • [57] Sanchez, P. A., Denning, G. L. & Nziguheba, G. (2009). The African green revolution moves forward. Food Secur. 1, 37-44
  • [58] Somasegaran, P. & Hoben, H. J. (2012). Handbook for rhizobia: methods in legume-Rhizobium technology, Springer Science & Business Media. https://doi.org/10.1007/978-1-4613-8375-8
  • [59] Soumare, A., Diop, T., Lahcen, O., Bassene, G., Duponnois, R. & Ndoye, I. (2013). Impact de Eucalyptus camaldulensis sur la diversitie des Rhizobium associes a Acacia senegal et A seyel au Senegal. J. Appl. Biosci. 67, 5183-5193
  • [60] Sprent, J. I., Odee, D. W. & Dakora, F. D. (2010). African legumes: a vital but under-utilized resource. J. Exp. Bot. 61, 1257-1265
  • [61] Syampungani, S., Chirwa, P. W., Akinnifesi, F. K. & Ajayi, O. C. (2010). The potential of using agroforestry as a win-win solution to climate change mitigation and adaptation and meeting food security challenges in Southern Africa. Agric. J. 5, 80-88
  • [62] Wang, L., D'odorico, P., Ries, L. & Macko, S. A. (2010). Patterns and implications of plant-soil δ 13 C and δ 15 N values in African savanna ecosystems. Quat. Res. 73, 77-83
  • [63] Yakubu, H., Kwari, J. & Ngala, A. (2010). N2 fixation by grain legume varieties as affected by rhizobia inoculation in the sandy loam soil of sudano-sahelian zone of north-eastern Nigeria. Nig. J. Basic Appl. Sci. 18, 229-236

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-ad35427b-0382-4e9b-81be-878dbec67187
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.