Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 36 | 42-59

Article title

Drosophila melanogaster (Meigen, 1830): A Potential Model for Human Diseases

Content

Title variants

Languages of publication

EN

Abstracts

EN
Over some time, Drosophila melanogaster (Meigen, 1830), commonly called fruit fly, has been used as a model organism in both scientific and medical research. Drosophila in comparison with other mammalian species shares some basic features like physiological, biological, biochemical, and neurological resemblances which make them suitable for use for biomedical research. Fruit fly can be maintained efficiently at a reduced cost in the laboratory, and it is endorsed as an alternative model compared to other vertebrates. It is confirmed and documented that almost 75 % of human disease-causing genes have functional similarities in Drosophila. Nevertheless, the use of D. melanogaster as a model organism was not narrowed to genetic research only, but several experiments. The use of this organism as a model for human diseases has also led to findings like neurodegenerative diseases, Huntington’s disease, spinocerebellar ataxia type 3, cancer, cardiovascular, inflammation and infectious diseases, and metabolic disorders. The fly is used as an ideal model organism for neurodegenerative disease studies such as Alzheimer’s and Parkinson’s, which have become more predominant in today's aging population due to its complex nervous system which conserved neurological function, and the human disease-related loci. In this review, we presented and discussed Drosophila melanogaster as a model to study several human diseases.

Year

Volume

36

Pages

42-59

Physical description

Contributors

  • Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
  • Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
  • Department of Microbiology, University of Lagos, Akoka, Lagos State, Nigeria

References

  • [1] Abolaji AO, Kamdem JP, Farombi EO, Rocha JB. Drosophila melanogaster as a Promising Model Organism in Toxicological Studies. Arch. Bas. App. Med. 1 (2013) 33-38
  • [2] Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE.The genome sequence of Drosophila melanogaster. Science 287 (2000) 2185-2195
  • [3] Agrawal N, Pallos J, Slepko N et al. Identification of combinatorial drug regimens for treatment of Huntington’s disease using Drosophila. Proc Natl Acad Sci USA. 102 (2005) 3777–3781. http://dx.doi.org/10.1073/pnas.0500055102
  • [4] Akasaka T, Ocorr K. Drug discovery through functional screening in the Drosophila heart. Methods Mol Biol. 577 (2009) 235-249
  • [5] Alayari NN, Vogler G, Taghli-Lamallem O, Ocorr K, Bodmer R, Cammarato A. Fluorescent labeling of Drosophila heart structures. J Vis Exp 2009. http://doi:10.3791/1423
  • [6] Aritakula A, Ramasamy A. Drosophila-based in vivo assay for the validation of inhibitors of the epidermal growth factor receptor/Ras pathway. J Biosci. 33 (2008) 731-742
  • [7] Baker KD, Thummel CS. Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab. 6 (2007) 257-266
  • [8] Bellen HJ, Tong C, Tsuda H. 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci. 11 (2010) 514–22. http://dx.doi.org/10.1038/nrn2839
  • [9] Bina S, Wright VM, Fisher KH, Milo M, Zeidler MP. Transcriptional targets of Drosophila JAK/STAT pathway signaling as effectors of hematopoietic tumor formation. EMBO Rep. 11 (2010) 201-207
  • [10] Bradu A, Ma L, Bloor JW, Podoleanu A. Dual optical coherence tomography/ fluorescence microscopy for monitoring of Drosophila melanogaster larval heart. J Biophotonics. 2 (2009) 380-388
  • [11] Braun T, Woollard A. RUNX factors in development: lessons from invertebrate model systems. Blood Cells Mol Dis. 43 (2009) 43-48
  • [12] Bryantsev AL, Cripps RM. Cardiac gene regulatory networks in Drosophila. Biochim Biophys Acta. 1789 (2009) 43-353
  • [13] Cagan RL Ready DF. The emergence of order in the Drosophila pupal retina. Dev Biol. 136 (1989) 346-362
  • [14] Choma MA, Izatt SD, Wessells RJ, Bodmer R, Izatt JA. Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography. Circulation. 114 (2006) e35-e36
  • [15] Christofori G, Semb H. The role of the cell-adhesion molecule E-cadherin as a tumor-suppressor gene. Trends Biochem Sci. 24 (1999) 73-76
  • [16] Crowther DC, Page R, Chandraratna D, et al. A Drosophila model of Alzheimer’s disease. Methods Enzymol. 412 (2006) 234-255. http://dx.doi.org/10.1016/S0076-6879(06)12015-7
  • [17] Dasari S, Cooper RL. Direct influence of serotonin on the larval heart of Drosophila melanogaster. J Comp Physiol B. 176 (2006) 349-357
  • [18] Dasari S, Viele K, Turner AC, Cooper RL. Influence of PCPA and MDMA (Ecstasy) on physiology, development, and behavior in Drosophila melanogaster. Eur J Neurosci. 26 (2007) 424-438
  • [19] Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron; 39 (2003) 889–909. http://dx.doi.org/10.1016/S0896-6273(03)00568-3
  • [20] DiAngelo JR, Birnbaum MJ. Regulation of fat cell mass by insulin in Drosophila melanogaster. Mol Cell Biol. 29 (2009) 6341-6352
  • [21] Feany MB, Bender WW. A Drosophila model of Parkinson’s disease. Nature. 404 (2000) 394–8. http://dx.doi.org/10.1038/35006074
  • [22] Ferrando D, Imler JL, Hetru C, Hoffmann JA. The Drosophila systemic immune response: sensing and signaling during bacterial and fungal infections. Nat Rev Immunol. 7 (2007) 862-874
  • [23] Festing MFW, Baumans V, Combes DR, Halder M, Hendriksen FM, Howard BR, Lovell DP, Moore GJ, Overend P, Wilson MS. Reducing the use of laboratory animals in biomedical research: problems and possible solutions. Altern. Lab. Anim. 26 (1999) 283-301
  • [24] Fortini ME, Bonini NM. Modeling human neurodegenerative diseases in Drosophila: on a wing and a prayer. Trends Genet. 16 (2000) 161-167
  • [25] Fortini ME, Skupski MP, Boguski MS, Hariharan IK. A survey of human disease gene counterparts in the Drosophila genome. J. Cell Biol. 150 (2000) F23-30
  • [26] Greene JC, Whitworth AJ, Kuo I et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci. 100 (2003) 4078-4083. http://dx.doi.org/10.1073/pnas.0737556100
  • [27] Haselton AT, Fridell YW. Adult Drosophila melanogaster as a model for the study of glucose homeostasis. Aging. 2 (2010) 523-526
  • [28] Hirth F. Drosophila melanogaster in the study of human neurodegeneration. CNS & Neurological Disorders - Drug Targets 9 504-523
  • [29] Horowitz A, Simons M. Branching morphogenesis. Circ Res 103 (2008) 784-795
  • [30] Humbert PO, Grzeschik NA, Brumby AM, Galea R, Elsum I, Richardson HE. Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module. Oncogene. 27 (2008) 6888-6907
  • [31] Januschke J, Gonzalez C. Drosophila asymmetric division, polarity, and cancer. Oncogene. 27 (2008) 6994-7002
  • [32] Kaplan DD, Zimmermann G, Suyama K, Meyer T, Scott MP. A nucleostemin family GTPase, NS3, acts in serotonergic neurons to regulate insulin signaling and control body size. Genes Dev. 22 (2008) 1877-1893
  • [33] Kauppila S, Maaty WS, Chen P, Tomar RS, Eby MT, Chapo J, Chew S, Rathore N, Zachariah S, Sinha SK, et al. Eiger and its receptor, Wengen, comprise a TNF-like system in Drosophila. Oncogene 22 (2003) 4860-4867
  • [34] Kim IM, Wolf MJ, Rockman HA. Gene deletion screen for cardiomyopathy in adult Drosophila identifies a new notch ligand. Circ Res. 106 (2010) 1233-1243
  • [35] Kim SK, Rulifson EJ. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature. 431 (2004) 316-320
  • [36] Liu L, Johnson WA, Welsh MJ. Drosophila DEG/ENaC pickpocket genes are expressed in the tracheal system, where they may be involved in liquid clearance. Proc Natl Acad Sci USA. 100 (2003) 2128-2133
  • [37] Li YM, Chan HY, Huang Y, Chen ZY. Green tea catechins upregulate superoxide dismutase and catalase in fruit flies. Mol. Nutr. Food Res. 51 (2007) 546-554
  • [38] Li Z, Karlovich CA, Fish MP et al. A putative Drosophila homolog of the Huntington’s disease gene. Hum Mol Genet. 8 (1999) 1807-1815. http://dx.doi.org/10.1093/hmg/8.9.1807
  • [39] Marsh JL, Thompson LM. Drosophila in the study of neurodegenerative disease. Neuron. 52: (2006) 169-178. http://dx.doi.org/10.1016/j.neuron.2006.09.025
  • [40] Marsh JL, Pallos J, Thompson LM. Fly models of Huntington’s disease. Hum Mol Genet. 12 (2003) R187-93. http://dx.doi.org/10.1093/hmg/ddg271
  • [41] Micchelli CA, Perrimon N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature. 439 (2006) 475-479
  • [42] Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, Depner M, von Berg A, Bufe A, Rietschel E, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature. 448 (2007) 470-473
  • [43] Nagaraj R, Banerjee U. The little R cell that could. Int J Dev Biol. 48 (2004) 755-760
  • [44] Na¨ ssel DR, Winther AM. Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol. 92 (2010) 42-104
  • [45] Neckameyer WS, Coleman CM, Eadie S, Goodwin SF. Compartmentalization of neuronal and peripheral serotonin synthesis in Drosophila melanogaster. Genes Brain Behav. 6 (2007) 756–769.
  • [46] Neely GG, Kuba K, Cammarato A, Isobe K, Amann S, Zhang L, Murata M, Elme´n L, Gupta V, Arora S, et al. A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function. Cell. 141 (2010) 142-153
  • [47] Nichols CD, Sanders-Bush E. A single dose of lysergic acid diethylamide influences gene expression patterns within the mammalian brain. Neuropsychopharmacol. 26 (2002) 634-642
  • [48] Null B, Liu CW, Hedehus M, Conolly S, Davis RW. High-resolution, in vivo magnetic resonance imaging of Drosophila at 18.8 Tesla. PLoS ONE. 3 (2008) e2817
  • [49] Olivier JP, Raabe T, Henkemeyer M, Dickson B, Mbamalu G, Margolis B, Schlessinger J, Hafen E, Pawson T. A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange. Sos. Cell. 73 (1993) 179-191
  • [50] Ocorr K, Akasaka T, Bodmer R. Age-related cardiac disease model of Drosophila. Mech Ageing Dev. 128 (2007a) 112-116
  • [51] Ocorr KA, Crawley T, Gibson G, Bodmer R. Genetic variation for cardiac dysfunction in Drosophila. PLoS ONE. 2 (2007c) e601
  • [52] Ocorr K, Perrin L, Lim HY, Qian L, Wu X, Bodmer R. Genetic control of heart function and aging in Drosophila. Trends Cardiovasc Med. 17 (2007b) 177-182
  • [53] Pagliarini RA, Xu T. A genetic screen in Drosophila for metastatic behavior. Science. 302 (2003) 1227-1231
  • [54] Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 63 (2011) 411-436
  • [55] Parkinson J. An essay on the shaking palsy. J Neuropsychiatry Clin Neurosci. 14 (2002) 223-236. http://dx.doi.org/10.1176/appi.neuropsych.14.2.223
  • [56] Park J, Kim Y, Chung J. Mitochondrial dysfunction and Parkinson’s disease genes: insights from Drosophila. Dis Mod Mech. 2 (2009) 36-40. http://dx.doi.org/10.1242/dmm.003178
  • [57] Paulson HL, Bonini NM, Roth KA. Polyglutamine disease and neuronal cell death. Proc Natl Acad Sci USA. 97 (2000) 12957-8. http://dx.doi.org/10.1073/pnas.210395797
  • [58] Pendse J, Ramachandran PV, Na J, Narisu N, Fink JL, Cagan RL, Collins FS, Baranski TJ. A Drosophila functional evaluation of candidates from human genome-wide association studies of type 2 diabetes and related metabolic traits identifies tissue-specific roles for dHHEX. BMC Genomics. 14 (2013) 136. http://doi:10.1186/1471-2164-14-136
  • [59] Peng, C, Chan HY, Li YM, Huang Y, Chen ZY. Black tea theaflavins extend the lifespan of fruit flies. Exp. Gerontol. 44 (2009) 773-783
  • [60] Pereira PS, Teixeira A, Pinho S, Ferreira P, Fernandes J, Oliveira C, Seruca R, Suriano G, Casares F. E-cadherin missense mutations, associated with hereditary diffuse gastric cancer (HDGC) syndrome, display distinct invasive behaviors and genetic interactions with the Wnt and Notch pathways in Drosophila epithelia. Hum Mol Genet. 15 (2006) 1704-1712
  • [61] Reim I, Frasch M. Genetic and genomic dissection of cardiogenesis in the Drosophila model. Pediatr Cardiol. 31 (2010) 325-334
  • [62] Reiter LT, Potocki L, Chien S, Gribskov M, Bier E. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 11 (2001) 1114-1125
  • [63] Roeder T, Isermann K, Kabesch M. Drosophila in asthma research. Am J Respir Crit Care Med. 179 (2009) 979-983
  • [64] Rothenfluh A, U Heberlein. Drugs, flies, and videotape: the effects of ethanol and cocaine on Drosophila locomotion. Curr. Opin. Neurobiol. 12 (2002) 639-645
  • [65] Ruaud AF, Thummel CS. Serotonin and insulin signaling team up to control growth in Drosophila. Genes Dev. 22 (2008) 1851-1855
  • [66] Rubin GM, Lewis EB. A brief history of Drosophila’s contributions to genome research. Science 287: 2216-2218. http://dx.doi.org/10.1126/science.287.5461.2216
  • [67] Rüb U, de Vos RA, Schultz C et al. Spinocerebellar ataxia type 3Machado-Joseph disease): severe destruction of the lateral reticular nucleus. Brain. 125 (2002) 2115-2124. http://dx.doi.org/10.1093/brain/awf208
  • [68] Rulifson EJ, Kim SK, Nusse R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science. 296 (2002) 1118-1120
  • [69] Satta RN, Dimitrijevic, Manev H. Drosophila metabolizes 1, 4-butanediol into gamma-hydroxybutyric acid in vivo. Eur. J. Pharmacol. 473 (2003) 149-152
  • [70] Sepel LMN, Loreto ELS. Um século de Drosophila na genética. Genética na Escola. (2010) 42- 47
  • [71] Sharmaa A, Mishraa M, Shuklaa AK, Kumarb R, Abdinc MZ, Chowdhuria DK. Organochlorine pesticide, endosulfan induced cellular and organismal response in Drosophila melanogaster. J. Hazard Mater. 221-222 (2012) 275-287
  • [72] Shiga Y, Tanaka-Matakatsu M. A nuclear GFP/_-galactosidase fusion protein as a marker for morphogenesis in living Drosophila. Dev Growth Differ. 38 (1996) 99-106
  • [73] Simon MA, Bowtell DD, Dodson GS, Laverty TR, Rubin GM. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell. 67 (1991) 701-716
  • [74] Singh MP, Mishra M, Sharma A, Shukla AK, Mudiam MKR, Patel DK, Ram KR, Chowdhuri DK. Genotoxicity and apoptosis in Drosophila melanogaster exposed to benzene, toluene, and xylene: Attenuation by quercetin and curcumin. Toxicol. Appl. Pharm. 253 (2011) 14-30
  • [75] Sonoshita M, Cagan RL. Modeling Human Cancers in Drosophila. Current Topics in Developmental Biology. 121 (2017) 70-2153. http://dx.doi.org/10.1016/bs.ctdb.2016.07.008
  • [76] Stephenson R, Metcalfe NH. Drosophila melanogaster: a fly through its history and current use. J R Coll Physicians Edinb. 43 (2013) 70-75. http://dx.doi.org/10.4997/JRCPE.2013.116
  • [77] Thomas B, Beal MF. Parkinson’s disease. Hum Mol Genet. 16 (2007) R184-94. http://dx.doi.org/10.1093/hmg/ddm159
  • [78] Vidal M, Cagan RL. Drosophila models for cancer research. Curr Opin Genet Dev. 16 (2006) 10-16
  • [79] Vogler G, Ocorr K. Visualizing the beating heart in Drosophila. J Vis Exp. (2009) http://doi:10.3791/1425
  • [80] Wagner C, Isermann K, Fehrenbach H, Roeder T. Molecular architecture of the fruit fly’s airway epithelial immune system. BMC Genomics 9 (2008) 446
  • [81] Wang S, Tulina N, Carlin DL, Rulifson EJ. The origin of islet-like cells in Drosophila identifies parallels to the vertebrate endocrine axis. Proc Natl Acad Sci USA. 104 (2007) 19873-19878
  • [82] Whitten J. The post-embryonic development of the tracheal system in Drosophila melanogaster. Q J Microsc Sci. 98 (1957) 123-150
  • [83] Whitworth AJ, Wes PD, Pallanck LJ. Drosophila models pioneer a new approach to drug discovery for Parkinson's disease. Drug Discov. Today. 11 (2006) 119-126
  • [84] Wolf MJ, Rockman HA. Drosophila melanogaster as a model system for the genetics of postnatal cardiac function. Drug discovery today Disease models. 5 (2008) 117-123
  • [85] Wood-Kaczmar A, Gandhi S, Wood NW. Understanding the molecular causes of Parkinson’s disease. Trends Mol Med. 2006. 12: 521-528. http://dx.doi.org/10.1016/j.molmed.2006.09.007
  • [86] Wu L, Silverman N. Fighting infection fly-style. Fly (Austin). 1 (2007) 106-109
  • [87] Hetru C, Hoffmann JA. NF-kappaB in the immune response of Drosophila. Cold Spring Harb Perspect Biol. 1 (2009) a000232
  • [88] Wu M, Pastor-Pareja JC, Xu T. Interaction between Ras (V12) and scribbled clones induces tumor growth and invasion. Nature. 463 (2010) 545-548
  • [89] Wu M, Sato TN. On the mechanics of cardiac function of Drosophila embryo. PLoS ONE 3 (2008) e4045
  • [90] Zhang S, Feany MB, Saraswati S et al. Inactivation of Drosophila huntingtin affects long-term adult functioning and the pathogenesis of Huntington’s disease model. Dis Model Mech. 2 (2009) 247–66. http://dx.doi.org/10.1242/dmm.000653

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-ad1211f0-3b71-4361-a778-20417e3b0759
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.