Preferences help
enabled [disable] Abstract
Number of results
2016 | 58 | 97-121
Article title

Synthesis and characterization of InWO3 - TiO2 nanocomposite material and multi application

Title variants
Languages of publication
InWO3 -TiO2 nanocomposite material was synthesised by co-precipitation method and sonication technique. The synthesized nanomaterial was characterized by FE-SEM with EDX, HR-TEM, XRD, FT-RAMAN, AFM and BET surface area measurements. The photocatalytic activity of InWO3-TiO2 nanocomposite material was studied from the photodegradation of malachite green (MAG) under UV-light irradiation. The photodegradation of MAG at various parameters are reported. The Photodegradation was found to follow the pseudo-first-order kinetics. The Hydroxyl radical formation in the mechanism was confirmed by fluorescence quenching technique. The antimicrobial activity of the prepared nanomaterials has also been investigated. Cyclic voltammeter (CV)) measurements analysis of the prepared nonamaterial was discussed in detail. It was proposed that the catalyst was found to be stable and reusable.
Physical description
  • Department of Chemistry, Annamalai University, Annamalainagar - 608 002, India
  • Department of Chemistry, Annamalai University, Annamalainagar - 608 002, India
  • Department of Chemistry, Annamalai University, Annamalainagar - 608 002, India
  • [1] Y. Lin, D. Li, J. Hu, G. Xiao, J. Wang, W. Li, X. Fu, Highly Efficient Photocatalytic Degradation of Organic Pollutants by PANI Modified TiO2 Composite. J. Phys. Chem. C. 116 (2012) 5764-5772.
  • [2] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev. 95 (1995) 69-96.
  • [3] L. Gonzalez-Urbina, K. Baert, B. Kolaric, J. Perez-Moreno, K. Clays, Linear and Nonlinear Optical Properties of Colloidal Photonic Crystals, Chem. Rev. 112, 2268−2285 (2012).
  • [4] X. Zheng, S. Meng, J. Chen, J. Wang, J. Xian, Y. Shao, X. Fu,and D. Li, Titanium Dioxide Photonic Crystals with Enhanced Photocatalytic Activity: Matching Photonic Band Gaps of TiO2 to the Absorption Peaks of Dyes, J. Phys. Chem. C. 117 (2013) 21263-21273.
  • [5] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (2008) 515-582.
  • [6] A.G. Agrios, P.J. Pichat, State of the art and perspectives on materials and applications of photocatalysis over TiO2, Appl. Electrochem. 35 (2005) 655-663.
  • [7] K. Demeestere, J. Dewulf, H. Van Langenhove, Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air, State Art Crit. Rev Rev. Environ. Sci. Technol, 37 (2007) 489-538.
  • [8] R. Abe, H. Takami, N. Murakami, B. Ohtani, Pristine Simple Oxides as Visible Light Driven Photocatalysts: Highly Efficient Decomposition of Organic Compounds over Platinum-Loaded Tungsten Oxide. J. Am. Chem. Soc. 130 (2008) 7780-7781.
  • [9] T Arai, M. Horiguchi, M. Yanagida, T. Gunji, H. Sugihara, K. Sayama, Complete Oxidation of Acetaldehyde and Toluene over a Pd/WO3 Photocatalyst under Fluorescent- or Visible-light Irradiation, Chem. Commun. 43 (2008) 5565-5567.
  • [10] J. Kim, C. W. Lee, W. Choi, Platinized WO3 as an Environmental Photocatalyst that Generates OH Radicals under Visible Light, Environ. Sci. Technol. 44 (2010) 6849-6854.
  • [11] D. Bi, Y. Xu, Improved Photocatalytic Activity of WO3 through Clustered Fe2O3 for Organic Degradation in the Presence of H2O2, Langmuir. 27 (2011) 9359-9366.
  • [12] L. Wan, J. Sheng, H. Chen, Y. Xu, Different Recycle Behavior of Cu2+ and Fe3+ Ions for Phenol Photodegradation over TiO2 and WO3, J. Hazard. Mater. 262 (2013) 114-120.
  • [13] W. Li, D. Li, S. Meng, W. Chen, X. Fu, Y. Shao, Novel Approach to Enhance Photosensitized Degradation of Rhodamine B under Visible Light Irradiation by the ZnxCd1-xS/TiO2 Nanocomposites, Environ. Sci. Technol. 45 (2011) 2987-2993
  • [14] N. Bao, Y. Li, Z. Wei, G. Yin, J. Niu, Adsorption of Dyes on Hierarchical Mesoporous TiO2 Fibers and Its Enhanced Photocatalytic Properties, J. Phys. Chem. C. 115 (2011) 5708-5719.
  • [15] D. Li, H. Huang, X. Chen, Z. Chen, W. Li, D. Ye, X. Fu, New Synthesis of Excellent Visible-Light TiO2−xNx Photocatalyst Using a Very Simple Method, J. Solid State Chem. 180 (2007) 2630-2634.
  • [16] W. Choi, A. Termin, M. R. Hoffmann, The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics, J. Phys. Chem. 98 (1994) 13669-13679.
  • [17] X. Cheng, Y. Xu, S. Gao, H. Zhao, L. Huo, Ag Nanoparticles Modified TiO2 Spherical Heterostructures with Enhanced Gas-sensing Performance, Sens. Actuators, B. 155 (2011) 716-721.
  • [18] F. Xiao, Layer-by-Layer Self-Assembly Construction of Highly Ordered Metal-TiO2 Nanotube Arrays Heterostructures (M/TNTs, M = Au, Ag, Pt) with Tunable Catalytic Activities J. Phys. Chem. C. 116 (2012) 16487-16498.
  • [19] R. Yuan, T. Chen, E. Fei, J. Lin, Z. Ding, J. Long, Z. Zhang, X. Fu, P. Liu, L. Wu, X . Wang, Surface Chlorination of TiO2-Based Photocatalysts: A Way to Remarkably Improve Photocatalytic Activity in Both UV and Visible Region, ACS Catal. 1 (2011) 200-206.
  • [20] H. Park, W. Choi, TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors, J. Phys. Chem. B. 108 (2004) 4086-4093.
  • [21] D. Zhao, C. Chen, Y. Wang, H. Ji, W. Ma, L. Zang, J. Zhao, Surface Modification of TiO2 by Phosphate: Effect on Photocatalytic Activity and Mechanism Implication, J. Phys. Chem. C. 112 (2008) 5993-6001.
  • [22] J. Wang, H. Ruan, W. Li, D. Li, Y. Hu, J. Chen, Y. Shao, Y. Zheng, Highly Efficient Oxidation of Gaseous Benzene on NovelAg3VO4/TiO2 Nanocomposite Photocatalysts under Visible and Simulated Solar Light Irradiation, J. Phys. Chem. C. 116 (2012) 13935-13943.
  • [23] Y. Hu, D. Li, Y. Zheng, W. Chen, Y. He, Y. Shao, X. Fu, G. Xiao, BiVO4/TiO2 Nanocrystalline Heterostructure: A Wide Spectrum Responsive Photocatalyst towards the Highly Efficient Decomposition of Gaseous Benzene, Appl. Catal. B. 104 (2011) 30-36.
  • [24] D. L. Liao, C. A. Badour, B. Q. Liao, Preparation of Nanosized TiO2/ZnO Composite Catalyst and Its Photocatalytic Activity for Degradation of Methyl Orange, J. Photochem. Photobiol. A. 194 (2008) 11-19.
  • [25] J. Sheng, X. Li, and Y. Xu, Generation of H2O2 and OH Radicals on Bi2WO6 for Phenol. Degradation under Visible Light, ACS Catal. 4 (2014) 732-737.
  • [26] C.C. Chen, C.S. Lua, Y.C. Chung, J.L. Jan, UV light induced photodegradation of malachite green on TiO2 nanoparticles, J. Hazard. Mater. 141 (2007) 520-528.
  • [27] L. Ge, M. Xu, H. Fang, Synthesis of novel photocatalytic InVO4-TiO2 thin films with visible light photoactivity, Mater. Lett. 61 (2007) 63-66.
  • [28] S. A. K. Leghari, S. Sajjad, F. Chen, J. Zhang, WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst, Chem. Eng. J. 166 (2011) 906-915.
  • [29] L. Miao, S. Tanemura, K. Toh Kaneko, M. Tanemura, Fabrication, characterization and Raman study of anatase-TiO2 nanorods by a heating-sol–gel template process, J. Cryst. Growth. 264 (2004) 246-252.
  • [30] X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, J.R. Lombard, Raman Investigation of Nanosized TiO2: Effect of Crystallite Size and Quantum Confinement, J. Phys. Chem. C. 116 (2012) 8792-8797.
  • [31] J. Yu. G, Zhang L. J, Cheng B and Y. R. Su, Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania, J. Phys. Chem. C. 111 (2007) 1058210589.
  • [32] D. Rajamanickam, P. Dhatshanamurthi, M. Shanthi, Enhanced photocatalytic efficiency of NiS/TiO2 composite catalysts using sunset yellow, an azo dye under day light illumination, Materials Research Bulletin. 61 (2014) 439-447.
  • [33] T. Sreethawong, Y. Yamadab, T. Kobayashi and S .Yoshikawa, Catalysis of nanocrystalline mesoporous TiO2 on cyclohexene epoxidation with H2O2: Effects of mesoporosity and metal oxide additives. J. Mol. Catal. A: Chem. 241 (2005) 23-32.
  • [34] V. L. Chandraboss, J. Kamalakkannan, S. Prabha and S. Senthilvelan, An efficient removal of methyl violet from aqueous solution by an AC-Bi/ZnO nanocomposite material, RSC Adv. 5 (2015) 2585725869.
  • [35] B. Subash, R. Krishnakumar, M. Swaminathan and M. Shanthi, Highly Efficient, Solar Active, and Reusable Photocatalyst: Zr-Loaded Ag−ZnO for Reactive Red 120 Dye Degradation with Synergistic Effect and Dye-Sensitized Mechanism, Langmuir. 29 (2013) 939-949.
  • [36] S. Balachandran and M. Swaminathan, Facile Fabrication of hetrostuctured Bi2O3-ZnO Photocatalyst and Enhanced Photocatalytic activity, J. Phys. Chem. C. 116 (2012) 26306-26312.
  • [37] J. Kamalakkannan, V.L. Chandraboss, S. Prabha, S. Senthilvelan, Advanced construction of Heterostructured InCrO4–TiO2 and its dual properties of greater UV-photocatalytic and antibacterial activity RSC Adv. 5 (2015) 77000-77013.
  • [38] B. Subash, R. Krishnakumar, M. Swaminathan and M. Shanthi, ZnS−Ag−ZnO as an Excellent UV-Light-Active Photocatalyst for the Degradation of AV 7, AB 1, RR 120, and RY 84 Dyes: Synthesis, Characterization, and Catalytic Applications, Ind. Eng. Chem. Res. 53 (2014) 12953-12963.
  • [39] Q. Xiang, J. Yu and M. Jaroniec, Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity, Phys. Chem. Chem. Phys. 13 (2011) 4853-4861.
  • [40] K. I. Ishibashi, A. Fujishima, T. Watanabe and K. Hashimoto, Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique, Electrochem. Commun. (2000) 207-210.
  • [41] L. Wei Cheng, J. Chien Tsai, T. Yun Huang, C. Wei Huang, B. Unnikrishnan and Y. Wei Lin, Mater. Res. Express. 1 (2014) 2053-1591.
  • [42] J. Kamalakkannan, V. L. Chandraboss, B. Loganathan, S. Prabha, B. Karthikeyan and S. Senthilvelan, TiInCrO6-Nanomaterial Synthesis, Characterization and multi applications, Appl Nanosci., 2015, DOI 10.1007/s13204-015-0474-y.
  • [43] S. Sajjad, S. A. K. Leghari, and J. Zhang, Nonstoichiometric Bi2O3: efficient visible light photocatalyst, RSC Adv. 3 (2013) 1363-1367.
  • [44] B. Subash, B. Krishnakumar, B. Sreedhar, M. Swaminathan, M. Shanthi, Highly active WO3–Ag–ZnO photocatalyst driven by day light illumination, Superlattices Microstruct. 54 (2013) 155-171.
  • [45] M. Zidan, W. T. Tan, Z. Zainal, A. H. Abdullah, J. K. Goh, Electrocatalytic oxidation of ascorbic acid mediated by lithium doped microparticles Bi2O3/MWCNT modified glassy carbon electrode, Int. J. Electrochem. Sci. 5 (2010) 501-508.
  • [46] M. M. Radhi, W. T. Tan, M. Z. B. A. Rahman, A. B. Kassim, Voltammetric Detection of Hg (ii) at C60 Activated Carbon and CWCNT Modified Glassy Carbon Electrode, Res. J. Appl. Sci. 5 (2010) 59-64
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.