Preferences help
enabled [disable] Abstract
Number of results
2018 | 92 | 2 | 139-154
Article title

Changes in Biochemical Variations of Sesuvium portulacastrum under Copper and Zinc Treatment

Title variants
Languages of publication
The present work deals with the ecophysiological studies on the biochemical contents of the effect of copper and zinc on Sesuvium portulacastrum L. The Sesuvium portulacastrum plant are grown in pots in a spilt plot design with copper and zinc concentration levels as main treatments (control, 100, 200, 300, 400, 500 and 600 mg/kg-1). The experiments were replicated five times. The Sesuvium portulacastrum plants are raised in pots. The copper and zinc were mixed with (1:2) the sand and applied to the pot soil (10 kg /acre). The two heavy metals copper and zinc were applied in the soil mixed. Pots were irrigated as and when necessary. The plant samples were analyzed at four different intervals (30, 60, 90 and 120th DAS). The results indicates that the heavy metals (copper and zinc) application, at the six rates (100, 200, 300, 400, 500 and 600 mg kg-1) caused reduction in various biochemical contents such as (Amino acid, Proline, Protein, Total sugar and Starch) when applied copper and zinc. Increasing in various bio chemical contents such as (Amino acid, Proline, Protein, Total Sugar and Starch) copper 200 mg kg-1, zinc 300 mg kg-1 only increased low concentration and higher concentration is decreased the all biochemical contents Sesuvium portulacastrum.
Physical description
  • [1] Al-Hakimil and A.M. Hamada, 2011. Ascorbic acid, thiamine or salicylic acid induced changes in some physiological parameters in wheat grown under copper stress. Plant Prot. Sci. 47: 92-108.
  • [2] Al-Lahham, O., N.M. El Assib and M. Fayyad, 2007. Translocation of heavy metals to tomato (Solanum lycopersicum) fruit irrigated with treated wastewater. Sci. Hort. 113: 250-254.
  • [3] Atesi, I., H.S. Suzen, A. Aydin and A. Karakay, 2004. The oxidative DNA base damage in tests of rats after interaperitoneal cadmium injection. Biometals, 17: 371-377.
  • [4] Azooz, M.M., M.F. Abou-Elhamd and M.A. Al-Fredan, 2012. Biphasic effect of copper on growth, proline, lipid peroxidation and antioxidant enzyme activities of wheat (Triticum aestivum cv. Hassawi) at early growth stage. Australian J. Crop Sci. 6(4): 688-694.
  • [5] Azooz, M.M., M.M. Youssef and M.A. Al-Omair, 2011. Comparative evaluation of zinc and lead and their synergistic effects on growth and some physiological responses of Hassawi okra (Hibiscus esculentus) seedlings. Amer. J. Plant Physiol. 6(6): 269-282.
  • [6] Backor, M., D. Fahselt and C.T. Wu, 2004. Free proline content is positively correlated with copper tolerance of the lichen photobiont Trebouxia erici (Chlorophyta). Plant Sci. 167: 151-157.
  • [7] Baker, A.J.M. and R.R. Brooks, 1989. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1: 81-126.
  • [8] Baker, A.J.M., R.D. Mc Grath, R.D. Reeves and J.A.C. Smith, 2000. Metal hyperaccumulator plants: A review of the ecology and physiology of a biochemical resource for phytoremediation of metals-polluted soils. In: Terry, N. and G. Banuelos (Ed.). Phytoremediation of contaminated soil and water. Lewis Publ., Bocaraton, pp: 85-1078.
  • [9] Bassi, R. and S.S. Sharma, 1993. Changes in proline content accompanying the uptake of zinc and copper by Lemna minor. Ann. Bot. 72: 151-154.
  • [10] Bates, L.S., R.P. Waldren and I. W. Teare, 1973. Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-205.
  • [11] Cherysafopoulou, E., J. Kadukova and N. Kalogerakis, 2005. A whole- plant mathematical model for the phytoextraction of lead by maize. Environ. Int. 31: 255-262.
  • [12] Dhir, B., P. Sharma and P.P. Saradhi, 2004. Hydrophytes lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline. Aquat. Toxicol. 66: 141-147.
  • [13] Dinakar, N., P.C. Nagajyothi, S. Suresh, Y. Udaykiran and T. Damodharan, 2008. Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activites in growing Arachis hypogaea L. seedling. J. Environ. Sci. 20: 199-206.
  • [14] Fariduddin, Q., M. Yusuf, S. Hayat and A. Ahmad, 2009. Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ. Exp. Bot. 66: 418-424.
  • [15] Farshian, S., J. Khara and P. Malekzadeh, 2007. Effect of arbuscular mycorrhizal (G. etunicatum) fungus on antioxidant enzymes activity under zinc toxicity in lettuce plants. Pak. J. Biol. Sci. 10: 1865-1869.
  • [16] Garbisu, C. and I. Alkorta, 2001. Phytoextraction: A cost effective plant-based technology for the removal of metals from the environment. Bioresource Tech. 777(3): 229-236.
  • [17] Gardea-Torresdey, J.L., R. Peralat-Videa, M. Montes, G. De la Rose and B. Corral-Diaz, 2004. Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: Impact on growth and uptake of nutritional elements. Bioresource Technol., 92: 229-235.
  • [18] Ghosh, M.K. and R.C. Srivastava, 1994. Effect of Mg, Zn and Mo salts on nitrate reductase activity and soluble protein content in leaves of Quercus serrata. Biol. Plant. 36(4): 599-605.
  • [19] Greger, M. and S. Lindberg, 1986. Effects of Cd2+ and EDTA on young sugar beets (Beta vulgaris L.), Cd2+ uptake and sugar accumulation. Physiol. Plant. 66: 69-74.
  • [20] Guo, T.R., G.P. Zhang and Y.H. Zhang, 2007. Physiological changes in barley plants under combined toxicity of aluminium, copper and cadmium. Colloids Surf. Biointerfaces, 57: 182-188.
  • [21] Hall, J.L., 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53: 1-11.
  • [22] Hamid, N., N. Bukhari and F. Jawaid, 2010. Physiological responses of Phaseolus vulgaris to different lead concentrations. Pak. J. Bot. 42: 239-246.
  • [23] Jain, M., Mathur, S. Koul and N.B. Sarin, 2001. Ameliorative effects of proline on salt stress- induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Rep. 20: 463-468.
  • [24] Jaleel, C.A. and M.M. Azooz, 2009. Exogenous calcium alters pigment composition g-glutamylkinase and proline oxidase activities in salt-stressed Withania somnifera. Plant Omics. J. 2: 85-90.
  • [25] Jayakumar, K., M.M. Azooz, P. Vijayarengan and C.A. Jaleel, 2010. Biochemical changes with exogenous cobalt application in soybean. J. Environ. Biol. 28: 561-566.
  • [26] Jayakumar, K., and P. Vijayarengan, 2006. Alterations in the carbohydrate metabolism of Vigna mungo (L.) Hepper as affected by cobalt stress. I. J. E. & Ecoplan. 12, 693-696.
  • [27] Jayakumar, K and P. Vijayarengan. Cobalt induced changes in growth and biochemical constituents in tomato (Lycopersicon esculantum Mill.) plants. I. J. Plan. & Ani. Sci. 2(1): 42-49, 2014.
  • [28] Jayakumar, K., Rajesh. M and T.M. Sathees Kannan. Impact of Sugar Mill Effluent on Photosynthetic Pigment content and Biochemical constituents variance of Cluster Bean (Cyamopsis tetragonaloba (L) Taub). I. J. Environ. & Bioenergy, 9(3): 143-160, 2014.
  • [29] Jayakumar, K., T.M. Satheesh Kannan, M. Rajesh and P. Vijayarengan. Effect of cobalt chloride on biochemical constituents, mineral status and antioxidant potentials in sesame (Sesamum indicum L.). I. J. Plan. & Ani. Sci. 1(2): 67- 81, 2013.
  • [30] Jayakumar, K., M.M. Azooz, P. Vijayarengan, S. Ananth,C. AbdulJaleel. Alteration in sugar metabolism of Glycine max with cobalt application. Journal of Ecobiotechnology, 2-1; 01-05-2010.
  • [31] Jayakumar, K., Cheruth Abdul Jaleel, M. M. Azooz. Phytochemical Changes in Green Gram (Vigna radiata) under Cobalt Stress. G. J. Mole. Sci. 3 (2): 46-49, 2008 a.
  • [32] Jaleel, C.A, Kaliyamoorthy Jayakumar, Zhao Chang-Xing and Muhammad Iqbal. Low Concentration of Cobalt Increases Growth, Biochemical Constituents, Mineral Status and Yield in Zea Mays. J. Sci. Research. 1(1) 128-137, 2009.
  • [33] Jayakumar, K., Cheruth Abdul Jaleel and and P. Vijayarengan. Changes in Growth, Biochemical Constituents and Antioxidant potentials in Radish (Raphanus sativus L.) Under cobalt stress. Turk J Biol 31 (2007) 127-136.
  • [34] Jayakumar, K., Packirisamy Vijayarengan, Zhao Changxing, Cheruth Abdul Jaleel. Soil applied cobalt alters the nodulation, leg-haemoglobin content and antioxidant status of Glycine max (L.) Merr. Coll. & Sur. B: B. fac. 67 (2008) 272–275
  • [35] John, R., P. Ahmad, K. Gadgil and S. Sharma, 2008. Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ. 54: 262.
  • [36] John, R., P. Ahmad, K. Gadgil and S. Sharma, 2009. Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int. J. Plant Prod. 3: 65-76.
  • [37] Kastori, R., M. Petrovic and N. Petrovic, 1992. Effect of excess lead, cadmium, copper and zinc on water relations in sunflower. J. Plant Nutr. 15(11): 2427-2439.
  • [38] Kumar, T. A. and T. Sadhna, 1999. Changes in some physiological and biochemical characters in Albizzia lebbek as bio-indicators of heavy metals toxicity. J. Environ. Biol. 20(2): 93-98.
  • [39] Lanaras, T., M. Moustakas, L. Symeonidis, S. Diamantoglou and S. Karataglis, 1993. Plant metal content, growth responses and some photosynthetic measurements on field-cultivated wheat growing on ore bodies enriched in Cu. Physiol. Plant. 88: 307-314.
  • [40] Liao, M.T., M.J. Hedley, D.J. Woolley, R.R. Brooks and M.A. Nichols, 2000. Copper uptake and translocation in chicory (Cichorium intybus L. cv. Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv. Rondy) plants growth in NFT system. II. The role of nicotianamine and histidine in xylem sap copper transport. Plant Soil, 223: 243-252.
  • [41] Lowry, O.H., N.J. Roserough, A.L. Farr and R.J. Randall, 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265-275.
  • [42] Manivasagaperumal, R., S. Balamurugan, G. Thiyagarajan and J. Sekar, 2011. Effect of zinc on germination, seedling growth and biochemical content of cluster bean (Cyamopsis tetragonoloba (L.) Taub). Curr. Bot. 2(5): 11-15.
  • [43] Marchiol, L., S. Assolari, P. Sacco and G. Zerbi, 2004. Phytoremediation of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ. Pollut. 132: 21-27.
  • [44] Mazen, A.M.B., 2004. Accumulation of four metals in tissues of Corchorus olitorius and possible mechanisms of their tolerance. Biol. Plant. 48: 267-272.
  • [45] Mocquot, B., J. Vangronsveld, H. Clijstres and M. Mench, 1996. Copper toxicity in young maize (Zea mays L.) plants: Effects on growth, mineral, chlorophyll contents and enzyme activities. Plant Soil, 182(2): 287-300.
  • [46] Moore, S. and W.H. Stein, 1948. Photometric method for use in the chromatography of amino acids. J. Biol. 176: 367-388.
  • [47] Murata, T., F.A. Eastein, C. Haskins, Y. Sillivcan and C.H.M. Van Barvel, 1969. Physiological aspects of crop yield. Amer. Soc. Agro., Crop Science Soc. America, Madison, Wisconsin, USA, pp. 239-259.
  • [48] Muthuchelian, K., M. Bertamini and N. Nedunchezhian, 2001. Triacontanol can protect Erythrina variegata from cadmium toxicity. Plant Phsiol. 158: 1487-1490.
  • [49] Nagoor, S., 1999. Physiological and biochemical responses of cereal seedlings to graded levels of heavy metals. II. Effects on protein metabolism in maize seedlings. Ad. Plant Sci. 12(11): 425-433.
  • [50] Nelson, N., 1944. A photometric adaptation of the Somogyis method for the determination of reducing sugar. Anal. Chem. 31: 426-428.
  • [51] Pal, M., E. Horvath, T. Janda, E. Paldi and G. Szalai, 2006. Physiological changes and defense mechanisms induced by cadmium stress in maize. Plant Nutr. Soil Sci. 169: 239-246.
  • [52] Palma, M.J., L.M. Sandalio, F.J. Cropas, M.C. Romero-Puertas, I. Mc Carthy and L.A. del Rio, 2002. Plant proteases, protein degradation and oxidative stress: Role of peroxisomes. Plant Physiol. Biochem. 40: 521-530.
  • [53] Pant, P.P., A.K. Tripathi and V. Dwivedi, 2011. Effect of heavy metals on some biochemical parameters of sal (Shorea robusta) seedling at nursery level, Doon Valley. Indian J. Agric. Sci. 2: 45-51.
  • [54] Poschenrieder, C. and J. Barcelo, 2004. Water relations in heavy metal stressed plants. In: M.N.V Prasad (Eds.), Heavy metal stress in plants. Narosa Publishing House, New Delhi, pp: 249-270.
  • [55] Rabie, M.H., M.E. Eleiwa, M.A. Aboseoud and K.M. Khalil, 1992. Effect of nickel on the content of carbohydrate and some mineral in corn and broad bean plant. J. K. U. Sci. 4: 37.
  • [56] Rashkin, I., P.B.A.N. Kumar, S. Dushenkow and D.E. Salt, 1994. Bioconcentration of heavy metals by plants. Curr. Opin. Biotechnol. 5: 285-290.
  • [57] Ren, F.C., T.C. Liu, H.Q. Liu and B.Y. Hu, 1993. Influence of zinc on the growth, distribution of elements and metabolism of one year old American ginseng plants. J. Plant Nutr. 16: 393-405.
  • [58] Romero-Puertas, M.C., F.J. Corpas, M. Rodriguez-Serrano, M. Gomez, L.A. del Rio and L.M. Sandalio, 2007. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. Plant Physiol. 164: 1346-1357.
  • [59] Samarakoon, A.B. and W.E. Rauser, 1979. Carbohydrate levels and photoassimilate export from leaves of Phaseolus vulgaris exposed to excess cobalt, nickel and zinc. Plant Physiol. 63: 1162-1169.
  • [60] Shrotri, C.K., M.N. Tewari and U.S. Rathorem, 1979. Effect of zinc on chlorophyll, sugars and starch contents in maize (Zea mays L.). Ind. J. Expt. Biol. 17: 58-60.
  • [61] Singh, D., K. Nath and Y.K. Sharma, 2007. Response of wheat seed germination and seedling growth under copper stress. J. Environ. Biol. 28(2): 409-414.
  • [62] Summner, J.B. and G.F Somers, 1949. Laboratory experiments in biological chemistry, 2nd ed., Academic press, New York, P.173.
  • [63] Upadhyay, R.G. and R.B. Singh, 1995. Response of various levels of zinc and irrigation on oil content, protein content in cake and nitrogen assimilatory enzyme in Indian mustard (Brassica juncea L.). Agri. Sci. Digest. 15(4): 219-222.
  • [64] Zengin, F.K. and O. Munzuroglu, 2005. Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol. Craco. Series Bot. 47(2): 157-164.
  • [65] Zengin, F.K. and S. Kirbag, 2007. Effects of copper on chlorophyll, proline, protein and abscisic acid level of sunflower (Helianthus annuus L.) seedlings. J. Environ. Bio. 28(3): 561-566.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.