Preferences help
enabled [disable] Abstract
Number of results
2017 | 83 | 75-91
Article title

Looking for an efficient port planning: analysis of Spanish Port System through artificial intelligence

Title variants
Languages of publication
Nowadays, society claim for efficiency and efficiency of managed resources, so, making-decision people look for transparency and good planning practices. In particular case of ports, many variables are involved on it, so Bayesian networks are a useful tool to make an efficient planning because this kind of networks allow to know relationships between variables, even when they are a great number of them. In order to facilitate this work, the following study is carried out in which, through the construction of a Bayesian network, the. Agent can know interesting information about how port variables are connected and can insert possible actions based on utility of their results, even when number of variables is high as occurs in planning and management of port terminals. There are a low number of studies related to this, so, our research includes more than 40 port variables, belonging to the four dimension of port sustainability. Main obtained conclusion shows that economic variables are the network parents in most of cases, so, their consideration is very important in planning decision-making. Their knowledge even allows to estimate probability of the rest of variables including in the network.
Physical description
  • [1] O. Doerr. Políticas portuarias sostenibles. Boletín FAL. CEPAL. Edición nº 299, número 7 de 2011
  • [2] Global Reporting Initiative. Guía para la elaboración de Memorias de Sostenibilidad. Versión 3.1. GRI, 2000
  • [3] O. Serrano. Operativa portuaria y sostenibilidad. CONAMA LOCAL 2015, 7 octubre de 2015. Málaga
  • [4] B. Molina Serrano, N. González Cancelas, F. Soler Flores and A, Camarero Orive. Classification and prediction of port variables using Bayesian Networks. Congresos de la Universitat Politècnica de València, CIT2016. Congreso de Ingeniería del Transporte, 2016
  • [5] R.J.Sánchez; A. Jauimurzono, G. Willmsmeier, G. Pérez Salas, O. Doerr, F. Pinto. Transporte marítimo y Puertos. Desafío y oportunidades en busca de un desarrollo sostenible de América Latina y El Caribe. CEPAL. Serie Recursos Naturales e Infraestructura, 2015
  • [6] M. Król. Maritime transport in Poland. World Scientific News, 78 (2017) 170-174.
  • [7] C. Crespo Soler, C.; Giner Fillol, A.; Morales Baraza, J.A.; Ponte Tubal, N; Ripoll V.M. Feliu. La información de sostenibilidad en el marco de las cuentas anuales: análisis aplicado al caso de la Autoridad Portuaria de Valencia. Revista do Contabilidado de Maestrado em Ciências Contábeis da UERJ, Rio Janeiro, v-12(3), (2007) p-11 set./dez
  • [8] Grupo De Trabajo 23. La sostenibilidad en los puertos. CONAMA VII Cumbre del desarrollo sostenible, 24 de noviembre de 2004
  • [9] C. Crespo Soler, V.M. Ripoll Feliu; A.M. Crespo Trujillo, A. Giner Fillol. La sostenibilidad ambiental en el sistema portuario de titularidad estatal. XIII Congreso AECA. Armonización y Gobierno de la Diversidad. 22-24 Septiembre 2005
  • [10] F. González, A. Guerra, F. Martín, J.J. Nóvoa, C. Otero, y J. Penela. Medición de la sostenibilidad en el sistema portuario Español: propuesta metodológica a través de indicadores sintéticos de desarrollo sostenible. XII Reunión de economía mundial, mayo de 2010. Santiago de Compostela
  • [11] Autoridad Portuaria De A Coruña, Autoridad Portuaria De Valencia, Organismo Público Puertos Del Estado. Guía para la elaboración de memorias de sostenibilidad en el sistema portuario español. FEPORTS, 2008
  • [12] Puertos Del Estado. Memoria de sostenibilidad del sistema portuario de interés general, 2011
  • [13] M. Dougherty, A review of neural networks applied to transport, Transportation Research Part C: EmeTingTechnologies, vol. 3(4), (1995) pp. 247-260
  • [14] H. Agerschou, Facilities Requirements. In Planning and Design of Ports and Marine Terminals, 2nd Ed. (H. Agerschou, eds), Thomas Telford Ltd., Londres, pp. 5-20, 2004.
  • [15] J.A. Moscoso, J.J. Ruiz, M.M. Cerbán, Técnicas de predicción en el tráfico Ro-Ro en el nodo logístico del Estrecho de Gibraltar, IAME 2011 conference
  • [16] S.N. Nicolaou. Berth Planning by Evaluation of Congestion and Cost - Closure. Journal of the Waterways and Harbors Division, Proceedings of the American Society of Civil Engineers, 95 (WW3), (1969), p. 419- 425
  • [17] R. Ortega. Cómo se generó la catástrofe, y quiénes se enteraron y quiénes no. Revista de libros de la Fundación Caja Madrid, no 153, (2009), p. 11-14.
  • [18] H.T. Pao, A comparison of neural network and multiple regression analysis in modeling capital structure. Expert Systems with Applications, vol. 35(3), (2008), pp. 720-727.
  • [19] G. De Monie. Monografías de la UNCTAD sobre Gestión de Puertos - Medición y Evaluación del Rendimiento y de la Productividad de los Puertos. UNCTAD, Naciones Unidas, Nueva York. 1988.
  • [20] Veerachai Gosasang, Watcharavee Chandraprakaikul, Supaporn Kiattisin. A Comparison of Traditional and Neural Networks Forecasting Techniques for Container Throughput at Bangkok Port. The Asian Journal of Shipping and Logistics, Vol. 27-3 (2011), p. 463-482. DOI: 10.1016/S2092-5212(11)80022-2
  • [21] E. Vlahogianni, M. Karlaftis, J. Golias, Optimized and meta-optimized neural networks forshort-term traffic flow prediction: A genetic approach. Transportation Research Part C. Emerging Technologies. Vol.13 (2005), p. 211–234. DOI: 10.1016/j.trc.2005.04.007
  • [22] Veerachai Gosasang,Watcharavee Chandraprakaikul, Supaporn Kiattisin. An Application of Neural Networks for Forecasting Container Throughput at Bangkok Port. Proceedings of the World Congress on Engineering 2010 Vol I WCE 2010, June 30 - July 2, 2010, London, U.K.ISBN: 978-988-17012-9-9
  • [23] Dharia, H. Adeli, Neural network model for rapid forecasting of freeway link travel time, Engineering Application of Artificial Intelligente, vol. 16(7), 2003, pp. 607-613.
  • [24] HSL Fan, J.M. Cao. Sea Space Capacity and Operation Strategy Analysis System. Transportation Planning and Technology. Vol. 24-1 (2000), p 49-63. DOI: 10.1080/03081060008717660
  • [25] M. Maloni, E.C. Jackson, North American Container Port Capacity: A Literature Review. Transportation Journal. Vol. 44-2 (2005), p. 16-36.
  • [26] F. Rodríguez Pérez. Dirección y explotación de puertos, Puerto Autónomo de Bilbao, 1985.
  • [27] S.D. Clark, M.S. Dougherty, H.R. Kirby. The use of neural network and time series models for short term forecasting: a comparative study. Proc. PTRC Summer Meeting, Manchester, (1993), p 151-62. ISBN: 0-86050- 254-6
  • [28] Faghri, S. Aneja, M. Vaziri. Estimation of percentage of pass – by trips generated by a shopping center using artificial neural networks. Transportation Planning and Technology, vol. 22(4), (1999), pp. 271-286
  • [29] M. Dougherty. A review of neural networks applied to transpon. Transportation Research Part C: EmeTingTechnologies, vol. 3(4), (1995), pp. 247-260
  • [30] F. Rodríguez Pérez. Dirección y explotación de puertos. Puerto Autónomo de Bilbao, 1985.
  • [31] M. Schreuder. Application of Approximate Performance Indicators for Master Planning of Large Ports. Port Technology International. Nº26, 2005, pp 19-22
  • [32] S.M. Amin, E.Y. Rodin, A. Liu, K. Rink, A. García-Ortiz. Traffic Prediction and Management via RBF Neural Nets and Semantic Control. Computer-Aided Civil and Infrastructure Engineedng, vol. 13(5), (1998), pp. 315-327.
  • [33] Camarero, MN González. Logística y Transporte de contenedores. 1a ed. Madrid. Fundación Agustín Betancourt, Noviembre 2006, 118p. ISBN: 978-84-611-5185-2.
  • [34] Hofleitner, R. Herring, P. Abbeel & A. Bayen. Learning the dynamics of arterial traffic from probe data using a dynamic Bayesian network. Intelligent Transportation Systems, IEEE Transactions on, 13(4), (2012), 1679-1693
  • [35] D. Janssens, G. Wets, T. Brijs, K. Vanhoof, T. Arentze & H. Timmermans. Integrating Bayesian networks and decision trees in a sequential rule-based transportation model. European Journal of operational research, 175(1), (2006), 16-34
  • [36] E. Castillo, J.M. Menéndez & S. Sánchez‐Cambronero. Traffic estimation and optimal counting location without path enumeration using Bayesian networks. Computer‐Aided Civil and Infrastructure Engineering, 23(3), (2008), 189-207
  • [37] E. Castillo, J.M. Menéndez & S. Sánchez‐Cambronero. Predicting traffic flow using Bayesian networks. Transportation Research Part B: Methodological, Vol. 42(5), (2008), 482-509
  • [38] S. Sun, C. Zhang & G. Yu. A bayesian network approach to traffic flow forecasting. Intelligent Transportation Systems, IEEE Transactions on, 7(1), (2006), 124-132
  • [39] W. Zheng, D.H. Lee & Q. Shi. Short-term freeway traffic flow prediction: Bayesian combined neural network approach. Journal of transportation engineering, 132(2), (2006), 114-121, 2006
  • [40] Tebaldi & M. West. Bayesian inference on network traffic using link count data. Journal of the American Statistical Association, 93(442), (1998), 557-573
  • [41] P. Trucco, E. Cagno, F. Ruggeri & O. Grande. A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation. Reliability Engineering & System Safety, 93(6), (2008), 845-856
  • [42] E. Klemola, J. Kuronen, J. Kalli, T. Arola, M. Hanninen, A. Lehikoinen & U. Tapaninen. A cross-disciplinary approach to minimising the risks of maritime transport in the Gulf of Finland. World Review of Intermodal Transportation Research, Vol. 2(4), (2009), 343-363
  • [43] P. Kaluza, A. Kölzsch, M.T. Gastner & B. Blasius. The complex network of global cargo ship movements. Journal of the Royal Society Interface, 2010, rsif20090495
  • [44] Camarero, N. González-Cancelas, F. Soler & I. López. Utilización de redes bayesianas como método de caracterización de parámetros físicos de las terminales de contenedores del sistema portuario español. Revista de Ingeniería, (39), (2013), 31-38.
  • [45] N.G. Cancelas, F.S. Flores & A.C. Orive. Modelo de eficiencia de las terminales de contenedores del sistema portuario español. Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA. Rect@, Vol. 14; (2013), 49-67
  • [46] J. Quijada-Alarcón, N. González-Cancelas, A. Camarero Orive, F. Soler Flores. Logistic groups in the Republic of Panama. Journal of Maps, v. 12 (n. 5); (2015), pp. 1248-1252. ISSN 1744-5647
  • [47] T. Rodríguez García, N. González-Cancelas, F. Soler-Flores. Setting the Port Planning Parameters in Container Terminals through Bayesian Networks. Promet -Traffic&Transportation, 27 (5), (2015). doi:10.7307/ptt.v27i5.1689
  • [48] S. Awad Núñez, N. González-Cancelas, F. Soler Flores, A. Camarero Orive. How should the sustainability of the location of dry ports be measured? A proposed methodology using Bayesian networks and multi-criteria decision analysis. Transport, v. 30 (n. 3); (2015), pp. 312-319. ISSN 1648-3480.
  • [49] K.X. Li, J. Yin, H.S. Bang, Z. Yang & J. Wang. Bayesian network with quantitative input for maritime risk analysis. Transportmetrica A: Transport Science, 10(2), (2014), 89-118.
  • [50] F.S. Flores, N.G. Cancelas, A.C. Orive, J.L.A. Gárate & M.D.C.P. Monzón. Diseño de un modelo de planificación de zonas de actividades logísticas mediante el empleo de redes bayesianas. Revista Ingeniería Industrial, 12(1), (2014).
  • [51] Elvira Consortium. Elvira: An environment for creating and using probabilistic graphical models. In: Gámez JA, Salomón A, editors. Proceedings of the 1st European Workshop on Probabilistic Graphical Models (PGM’02). (2002); p. 222-230.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.