PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 97 | 264-273
Article title

Porous silicon: fabrication, characterization and photoelectronic applications

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, the nanocrystalline porous silicon (PS) films are prepared by electrochemical etching of p-type silicon wafer with current density (15 mA/cm2) and etching times on the formation nanosized pore array with a dimension of around different etching time. The films were characterized by the measurement of XRD, FTIR spectroscopy and atomic force microscopy properties (AFM). We have estimated crystallites size from X-Ray diffraction about nano scale for porous silicon and Atomic Force microscopy confirms the nanometric size Chemical fictionalization during the electrochemical etching show on the surface chemical composition of PS. The etching possesses inhomogeneous microstructures that contain a -Si clusters (Si3–Si–H) dispersed in amorphous silica matrix. From the FTIR analyses showed that the Si dangling bonds of the as-prepared PS layer have large amount of Hydrogen to form weak Si–H bonds. The atomic force microscopy investigation shows the rough silicon surface, with increasing etching process (current density and etching time) porous structure nucleates which leads to an increase in the depth and width (diameter) of surface pits. Consequently, the surface roughness also increase.
Discipline
Year
Volume
97
Pages
264-273
Physical description
Contributors
  • Collage of Education for Pure Science, Ibn Al-Haitham University of Baghdad, Baghdad, Iraq
  • Collage of Education for Pure Science, Ibn Al-Haitham University of Baghdad, Baghdad, Iraq
References
  • [1] Xu, Z.P.; Zeng, Q.H.; Lu, G.Q.; Yu, A.B. Inorganic nanoparticlesfor efficient cellular delivery. Chem. Eng. Sci. 2006, 61, 1027-1040.
  • [2] J.H. Park, Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 2009, 8, 331- 336.
  • [3] M. Ferrari, Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 2005, 5, 161-171.
  • [4] D.J. Bharali, Khalil, M.; Gurbuz, M.; Simone, T.M Mousa, A.S. Nanoparticles and cancer therapy: A concise review with emphasis on dendrimers. Int. J. Nanomed. 2009, 4, 1- 7.
  • [5] U. Popp, Herrbig, R. Michel, Gs -O-Si Müller, E.; Oest1reich. C. Properties of Nanocrystalline ceramic powders ser Evaporation and Prepared by La properties Recondensation. J. Eur. Ceram. Soc. 1998, 18, 1153-1160.
  • [6] P.J Kelly, Arnell, R.D. Magnetron sputtering: a review of recent developments and applications. Vacuum 2000, 56, 159-172.
  • [7] M.T. Reetz, Helbig, W. Size- Selective Synthesis of Nanostructured Transition Metal Clusters.J. Am. Chem. Soc. 1994, 116, 7401-7402.
  • [8] B.H., Kear, Strutt, P.R. Chemical processing and applications for nanostructured materials Nanostruct. Mater. 1995, 6, 227-236.
  • [9] Kusová, K.; Cibulka, O.; Dohnalova, K.; Pelant, I.; Valenta, J.; Fucıkova, A.; Zıdek, K.; Lang, J.; Englich, J.; Matejka, P.; Stepanek, P.; Bakardjieva, S. Brightly Luminescent Organically Capped Silicon Nanocrystals Fabricated at Room Temperature and Atmospheric Pressure. ACS Nano 2010, 4, 4495-4504.
  • [10] C. Lee, Kim, H.; Cho, Y.; Lee, W.I. The properties of porous silicon as a therapeutic agent via the new photodynamic therapy. J. Mater. Chem. 2007, 17, 2648-2653.
  • [11] C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 2001, 46, 1-184.
  • [12] L.D. Field, Sternhell, S.; Wilton, H.V. Mechanochemistry of some hydrocarbons. Tetrahedron 1997, 53, 4051-4062.
  • [13] R. Cioffi, De Stefano, L.; Lamanna, R.; Montagnaro, F.; Santoro, L.; Senatore, S.; Zarrelli, A.TG, FT-IR and NMR characterization of n- C16H34 contaminated alumina and silica after mechanochemical treatment. Chemosphere 2008, 70, 1068-1076.
  • [14] L. De Stefano, Buccolieri, G.; De Luca, F.; Plescia, P. Milling effects upon quantitative determinations of chrysotile asbestos by the reference intensity ratio method. Powder Diffr. 2000, 15, 26-29.
  • [15] P. Plescia; Gizzi, D.; Benedetti, S.; Camilucci, L.; Canizza, C.; De Simone, P.; Paglietti, F.Mechanochemical treatment to recycling asbestos-containing waste. Waste Manage. 2003, 23, 209-218.
  • [16] V.V. Boldyrev; Mechanochemical modification and synthesis of drugs. J. Mater. Sci. 2004, 39, 5117-5120.
  • [17] H.J. Fecht, Nanostructure formation by mechanical attrition. Nanostruct. Mater. 1995, 6, 33-42.
Document Type
short_communication
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-ac3e0c15-249e-45e1-b8b7-e09158f8d993
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.