Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2025 | 59 | 44-57

Article title

Characterization of Escherichia coli Prevalence and Antibiotic Resistance in Abattoir Wastewaters in Calabar South, Nigeria

Content

Title variants

Languages of publication

EN

Abstracts

EN
Wastewaters are considered hotspots for antibiotic resistant bacteria and horizontal gene transfer among related and unrelated bacterial species. This study investigated the prevalence and antibiotic susceptibility pattern of Escherichia coli isolated from abattoir wastewaters in Calabar South, Nigeria. Seven hundred wastewater samples from three abattoirs: Uwanse (300), Mount Zion (250) and Amika Utuk (150) samples were analyzed. Standard microbiological procedures were followed in isolation and identification of the E. coli isolates. The antibiotic susceptibility test was done using the Kirby Bauer disk diffusion method. The results showed high prevalence of E. coli in the three abattoir locations; 202(67.3%) from Uwanse, 154 (61.6%) from Mount Zion and 81 (54%) from Amika Utuk. The antibiogram showed that the E. coli isolates were highly sensitive to Ofloxacin followed by Gentamicin in Uwanse (87.1% and 54.5%), Mount Zion (95.5% and 60.4%) and Amika Utuk (92.6% and 64.2%) respectively. The E. coli isolates were highly resistant to Ampicillin and Augumentin with both interchangeably topping the list in the three locations. Most isolates had Multiple Antibiotic Resistance (MAR) index greater than (>0.2). This result shows that the isolates are a public health threat since their contact with the environment might cause the spread of multidrug resistance organisms.

Year

Volume

59

Pages

44-57

Physical description

Contributors

  • Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
  • Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
  • Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
  • Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
  • Department of Microbiology, Faculty of Sciences, Osun State Polytechnic, Iree, Nigeria
  • Department of Biology, Faculty of Biological Sciences, Cross River State University of Technology, Calabar, Nigeria
  • Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria

References

  • [1] Abiade Paul CU, Kene IC, Chah KF (2005). Occurrence and antibiogram of Salmonellae in effluents from Nsukka Municipal abattoir. Nig Vet J. 27(1): 48-53
  • [2] Abraham S, O’Dea M, Sahibzada S, Hewson K, Pavic A, Veltan T, Abraham R, Harris T, Trott DJ, Jordan D (2019). Escherichia coli and Salmonella spp isolated from Australian meat chickens remain susceptible to critically important antimicrobial agents. Plos One, 14(10): e0224281
  • [3] Abu GO, Egenonu C (2008). The current pollution studies of the new Calabar River in Niger Delta region of Southern Nigeria: A survey of antibiogram profiles of its bacterial isolates. Afr. J. Environ. Sci. Technol. 2: 134-141
  • [4] Adenaike O, Olonitola OS, Ameh JB, Whong CMZ, (2013). Incidence of Extended Spectrum -lactamase Producing Bacteria and Multidrug Resistance Strains from Processed Meat Suya Sold in a University Community. Int. J. Eng. Sci. 2(12), 1-6
  • [5] Adesemoye AO, Opere BO, Makinde SCO (2006). Microbial content of abattoir wastewater and its contaminated soil in Lagos, Nigeria. Afr J. Biotechnol, 5 (20): 1963-1968
  • [6] Adetunji VO, Adesokan HK, Agada CA, Isola TO (2014) Bacterial load and antimicrobial profile of Escherichia coli and Listeria spp isolates from muscle tissues of slaughtered cattle at a major abattoir in Ibadan, South Western, Nigeria. J. Basic Appl. Sci. 10: 299-305
  • [7] Adeyemo OK (2002). Unhygienic operations of a city abattoir in South Western Nigeria: environmental implication. Afr. J. Assess. Man. 4(1): 23-28
  • [8] Adzitey F (2020). Incidence and antimicrobial susceptibility of Escherichia coli isolated from beef (meat muscle, liver and kidney) samples in Wa abattoir, Ghana. Cogent food Agric. 6(1), 1718269
  • [9] Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010). Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8: 251-259
  • [10] Alvarez-Fernandez E, Cancelo A, Diaz-Vega C, Capita R, Alonso-Callega C (2013). Antimicrobial resistance in E. coli isolates from conventionally and organically reared poultry: A comparison of agar disc diffusion and sensi-test Gram negative methods. Food Cont. 30: 227-234
  • [11] Amaya E, Reyes D, Paniagua M, Calderon S, Rashid MU, Colque P, Kuhn I, Mollby R, Weintraub A, Nord CE (2012). Antibiotic resistance patterns of Escherichia coli isolates from different aquatic environmental sources in Leon, Nicaragua. Clin. Microbiol. Infect. 18: 347-354
  • [12] Aradhye AA, Kolhe RP, Bhong CD, Deshpande PD, LLokhande SD, Godse BN (2014). Prevalence of antimicrobial resistant pathotypes of Escherichia coli in beef cattle and slaughterhouse premise. Afr. J. Microbiol. Res. 8(3): 277-286
  • [13] Atuanya EI, Nwogu NA, Orah CU (2018). Antibiotic resistance and plasmid profiles of bacteria isolated from Abattoir effluents around Ikpoba river in Benin city. Nigeria. J. Appl. Sci. Environ. Man. 22(11): 1749-1755
  • [14] Aworh MK, Kwaga J, Okolocha E, Mba N, Thakur S (2019). Prevalence and risk factors for multi-drug resistant Escherichia coli among poultry workers in the Federal Capital Territory, Abuja, Nigeria. Plos One, 14(11): e0225379
  • [15] Barbosa TM, Levy SB (2000). The impact of antibiotic use on resistance development and persistence. Drug. Resist. Updates, 3: 303-311
  • [16] Bauer AW, Kirby MDK, Sherris JC, Turck M (1996) Antibiotic susceptibility testing by standard single disc diffusion method. Am J. Clin. Pathol. 45, 493
  • [17] Bekele T, Zewde G, Tefera, G, Feleke A, Zerom Z (2014). Escherichia coli O157:H7 in raw meat in Addis Ababa, Ethiopia: Prevalence at an abattoir and retailers and antimicrobial susceptibility. Int. J. Food Cont. 1(4): 1-8
  • [18] Benka-Coker M, Ojior O (1995). Effects of slaughter house waste on the water quality of Ikpoba river. Nigeria. Biores. Technol. 52(1): 5-12
  • [19] Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, Barton HA, Wright GD (2012). Antibiotic resistance is prevalent in an isolated cave microbiome. Plos One, 7(4): e34953
  • [20] Bhunia AK (2008). Food-borne microbial pathogens: Mechanisms and Pathogenesis. Springer New York, NY
  • [21] Cabral Joao, P. (2010). Water Microbiology: Bacterial pathogens and water. Int. J. Environ. Res. Pub. Health, 7 (10), 3657-3703
  • [22] Canizalez-Roman A, Flores-Villasenor HM, Gonzalez-Nunez E, Velazquez-Roman J, Vidal JE, Muro-Amador S, Alapizco-Castro,G, Diaz-Quinonez JA, Leon-Sicairos N (2016). Surveillance of diaaheagenic Escherichia coli strains isolated from diarrhea cases from children, adults and elderly at Northwest of Mexico. Front. Microbiol. 7: 1924
  • [23] D’Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, Frese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD (2011). Antibiotic resistance is ancient. Nature, 447: 457-461
  • [24] Dethlefsen L, Huse S, Sogin ML, Relman DA (2008). The pervasive effects of an antibiotic on the human gutmicrobita, as revealed by deep 16S rRNA sequencing. Plos Biology, 6(11): e280. doi: 10.1371/journal.pbio.0060280
  • [25] Fair RJ, Tor Y (2014). Antibiotics and bacterial resistance in the 21st century. Perspect Medicinal Med. 6: 25-64
  • [26] Feng P, Weagant SD, Grant MA, Burkhardt W (2017). Bacteriological analytical manual (BAM), Enumeration of Eschrichia coli and the coliform bacteria. Retrieved from https://www.fdo.gov/food/laboratory-methods-foods/bam-4-enumeration-escherichia-coli-and-coliform-bactreia
  • [27] Finley RL, Collington P, Larsson DGJ, McEwen SA, Li XZ, Gaze HM, Reid-Smith R, Timinouni M, Graham DW, Topp E (2013).The scourge of antibiotic resistance: The important role of the environment. Clin. Infect. Dis. 57 (5): 704-710
  • [28] Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MOA, Dantas G (2012). The shared antibiotic resistome of soil bacteria and human pathogens. Sci. 337: 1107-1111.
  • [29] Frank C, Werber D, Cramer JP, Askar M, Faber M, an der Heiden M, Bernard H, Fruth A, Prager R, Spode A, Wadl M, Zoufaly A, Jordan S, Kemper MJ, Follin P, Müller L, King LA, Rosner, B, Buchholz U, Stark K, Krause G, HUS Investigation Team (2011). Epidermic profile of shiga-toxin producing E. coli O104:H4 outbreak in Germany. N. Engl, J. Med. 365(19), 1771-1780
  • [30] Gautam N, Poudel R, Lekhak B, Upreti MK (2019). Antimicrobial susceptibility pattern of Gram negative bacterial isolates from raw chicken meat samples. TUJM, 6(1): 89-95
  • [31] Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, Andersson DI (2011). Selection of resistant bacteria at very low antibiotic concentrations. Plos Pat. 7(7): e1002158
  • [32] Haberecht HB, Nealon NJ, Gilliland JR, Holder AV, Runyan C, Oppel RC, Ibrahim HM, Mueller L, Schrupp F, Vilchez S, Antony L, Scaria J, Ryan EP (2019). Antimicrobial-resistant Escherichia coli from Environment waters in Nothern Colarado. J. Environ. Pub. .Health, 2019: 3862949
  • [33] Igwaran A, Iweriebor BC, Okoh AI (2018). Molecular characterization and antimicrobial resistance pattern of Escherichia coli recovered from wastewater treatment plants in Eastern Cape South Africa. Int. J. Environ. Res. Pub. Health, 15: 1237
  • [34] Jernberg C, Lofmark S, Edlund C, Jansson JK (2010). Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiol 156: 3216-3223
  • [35] Kabiru LM, Bello MK, Junaid G, Laura MS (2015).Detection of pathogenic Escherichia coli in samples collected at an abattoir in Zaria, Nigeria and at different ppoints in the surrounding environment. Int. J. Environ.Res. Pub. Health, 12: 679-691
  • [36] Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegård B, Söderström H, Larsson DGJ (2011). Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. Plos One 6(2): e10738
  • [37] Krumperman PH (1983). Multiple antibiotis resistance indexing of E. coli to identify high risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 46(1), 165-170
  • [38] Laing CR, Zhan Y, Gilmour MW, Allen V, Johnson R, Thomas JE, Gannon VP. (2011). A comparison of Shiga-toxin 2 bacteriophage from classical enterohemorrhagic Escherichia coli serotypes and the German E. coli O104: H4 outbreak strain. Plos One, 7(5): e37362
  • [39] Livermore DM, Hope R, Brick G, Lillie M, Reynolds R (2008). Non-susceptibility trends among Enterobacteriaceae from bacteramiae in the UK and Ireland 2001-. 06. J. Antimicrob. Chem. 62(2), 1141-1154
  • [40] Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbath S, Hindler JF, Kahlmeter G, Olsson Liljequist B, Paterson DL, Rice .B, Stelling J, Struelens MJ, Vatopoulos A Weber JT (2012). Multidrug-resistant, extensively drug resistant and pan drug resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18: 268-281
  • [41] Marathe NP, Regina VR, Walujkar SA, Charan SS, Moore ERB, Larsson DGJ, Shouche YS (2013). A treatment plant receiving wastewater from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria. Plos One, 8(10): e77310
  • [42] Martinez JL (2008). Antibiotics and antibiotic resistance genes in natural environments. Sci. 321: 365-367
  • [43] Martinez JL, Fajardo A, Garmendia L, Hernandez A, Linares JF, Martinez-Solano L, Sánchez M B (2009). A global view of antibiotic resistance. FEMS Microbiol. Rev. 3: 44-65
  • [44] Moawad AA, Hotzel H, Awad O, Tomaso H, Neubauer H, Hafez HM, El-Adawy H (2017). Occurrence of Salmonella enteric and Escherichia coli in raw chicken and beef meat in Nothern Egypt and dissemination of antibiotic resistance markers. Gut Pat. 9: 57-69
  • [45] Nafarnda WD, Ajayi IE, Shawul JC, Kawe MS, Omeiza, GK, Sani NA, Tenuche OZ, Dantong DD, Tags SZ. (2012). Bacteriological quality of abattoir effluents discharged into water bodies in Abuja, Nigeria. ISRN Vet Sci 2012: 515689. doi: 10.5402/2012/515689
  • [46] Nafarnda WD, Yaji A, Kubkomawa HI (2006). Impact of abattoir waste on aquatic life: a case study of Yola. Global J. Pure Appl. Sci. 12 (1): 31-33
  • [47] Nwanta JA, Onunkwo JI, Ezenduka E (2010). Analysis of Nsukka metropolitan abattoir solid waste and its bacterial contents in South Eastern Nigeria: Public health implication. Arc. Environ. Occ. Health, 65(1): 21-26
  • [48] Omeregbe FB, Ebar EE, Nevkaa DN (2017). Antibiotic susceptibility and microbial analysis of Enterobacteriaceae from wastewater and sediments from abattoirs in Makurdi, Benue State, Nigeria. Int. J. App. Microbiol. Biotechnol. Res. 5 (2017): 103-109
  • [49] Osibanjo O, Adie GU (2007). Impact of effluent from Bodja abattoir on the physicochemical parameters of Oshunkaye stream in Ibadan City, Nigeria. Afr. J. Biotechnol. 6(15): 1806-1811
  • [50] Rahman MA, Rahman AKMA, Islam MA, Alam MM (2017). Antimicrobial resistance of Escherichia coli isolated from milk, beef and chicken meat in Bangladesh. Bang, J. Vet. Med. 15(2): 141-146
  • [51] Ram S, Vajpayee P, Singh RL, Shanker R (2009). Surface water of perennial river exhibits multi-antimicrobial resistant Shiga toxin and enterotoxin producing Escherichia coli. Ectotoxicol Environ Safety, 72: 490-495
  • [52] Ram, S., Vajpayee, P., Singh, R. L. and Shanker, R. (2009). Surface water of perennial river exhibits multi-antimicrobial resistant Shiga toxin and enterotoxin producing Escherichia coli. Ecotoxicol. Environ. Safety, 72: 490-495
  • [53] Rasmussen MM, Opintan JA, Frimodt-Moller N, Styrishave B (2015). Beta-lactamase producing Escherichia coli isolates in importedand locally produced chicken meat from Ghana. Plos One, 10: e0139706
  • [54] Rudolf AC, Leclercq R, Debbis EA, Canton R, Oppenheim BA Dowzicky MJ (2008). Comparative analysis of antimicrobial susceptibility among organisms from France, Germany, Italy, Spain and the UK as part of the Tigecycline evaluation and surveillance trial. Clin. Microbiol. Infect. 14(4): 307-314
  • [55] Sanjukta R, Dutta JB, Sen A, Shakuntala I, Ghatak S, Puro AK, Das S, Huidrom S, Dey TK, Purkait D, Dutta A, Das BC (2016). Characterization of multidrug-resistant Escherichia coli and Salmonella isolated from food producing animals in Northeastern India. Int. J. Infect. Dis. 45(1):114-115
  • [56] Segura PA, Francois M, Gagnon C, Sauve S (2009). Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters. Environ. Health Perspect. 117: 675-684
  • [57] Sharada R, Wilfred RS, Thiyageeswaran M (2010). Isolation, characterization and antibiotic resistance pattern of Escherichia coli isolated from poultry. Am-Eu J. Sci. Res. 5: 18-22
  • [58] Sherer BM, Miner RJ, Moore JA, Buckhouse JC (1992). Indicator bacterial survival in stream sediments. J. Environ. Quality, 21(4): 591-595
  • [59] Somda NS, Bonkoungou OJ, Zongo C, Kagambèga A, Bassole IHN, Traore Y, Mahillon J, Scippo M, Hounhouigan JD, Savadogo A (2015). Safety of Ready-To-Eat Chicken in Burkina Faso: Microbiological Quality, Antibiotic Resistance, and Virulence Genes in Escherichia coli Isolated From Chicken Samples of Ouagadougou. Food Sci. Nut. 6(4): 1077-1084
  • [60] Tesfaye H, Alemayehu H, Desta AF, Eguale T (2019) Antimicrobial susceptibility profile of selected Enterobacteriaceae in wastewater samples from health facilities, abattoir, downstream rivers and a WWTP in Addis Ababa, Ethiopia. Antimicrob. Resist. Infect. Cont. 8: 13
  • [61] Thanigaivel G, Anandhan AS (2015). Isolation and characterization of microorganisms from raw meat obtained from different market places in and around Chennai. J Pharm Chem Biol Sci. 3(2): 295-301
  • [62] Vinué L, Saénz Y, Somalo S, Escudero E, Moreno M. A, Ruiz-Larrea F, Torres C (2008). Prevalence and diversity of integrons and associated resistance genes in fecal Escherichia coli isolates of healthy humans in Spain. J. Antimicrob. Chem. 62: 934-937
  • [63] Von Baum H, Marre R (2005). Antimicrobial resistance of Escherichia coli and therapeutic implications. Int. J. Med. Microbiol. 295: 503-511
  • [64] Wellington EM, Boxau AB, Cross P, Feil EJ, Gaze WH, Hawkey PM, Johnson-Rollings AS, Jones DL, Lee NM, Otten W, Thomas CM, Williams AP (2013). The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. The Lancet Infect. Dis. 13: 155-165
  • [65] Yakubu AA, Garba HS, Habibullah SA (2007). A microbial and chemical assessment of abattoir effluent used for vegetable irrigation in Sokoto, Nigeria. Sahel J. Vet. Sci. 6: 1-4
  • [66] Zhao S, Blickenstall K, Bodes-Jones S, Gaines SA, Tong E, McDermott PF (2015). Comparison of the prevalence and antimicrobial resistances of Escherichia coli isolates from different retail meats in the United States, 2004-2008. Appl. Environ. Microbiol. 78: 1701-1707

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-aaf68ae1-016e-4313-b859-ac89f4e8f6d1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.