PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 7 | 4 | 264-269
Article title

Zastosowanie hipertermii w onkologii

Content
Title variants
EN
Usage of hyperthermia in oncology
Languages of publication
EN PL
Abstracts
EN
Hyperthermia may be defined as a way of controlled elevation of temperature, targeted on neoplasm or adjacent tissues, organs, body part(s) or entire body. The first medical application of hyperthermia in modern medicine was described by Westermark in 1898: he used containers with continuous flow of water at temperature of 42-44°C to treat inoperable cervical cancer. In studies performed to date, hyperthermia was combined with standard therapeutic modalities – radiotherapy and chemotherapy, both intravenous and intraperitoneal. Studies revealed that effects of hyperthermia include induction of apoptosis, both mediated by suppressor protein p53 and by an independent mechanism. Depending on the range of temperatures used, hyperthermia may be classified as mild (about 39°C), moderate (40-41°C) and intense (over 42°C). Chemotherapeutic agents whose effect is enhanced by concomitant hyperthermia include alkylating drugs (ifosfamide, cyclophosphamide), antineoplastic antibiotics (bleomycin, adriamycin, mitomycin C and actinomycin), platinum derivatives, antimetabolites (5-fluorouracil) and gemcitabine (administered a day before or a day after heating). Hyperthermia combined with radiotherapy has a synergistic effect. This effect depends on degree of temperature elevation in target tissue (the higher the temperature, the greater the effect), duration of heating and chronologic order of implementation of both modalities. It appears that hyperthermia may contribute to improvement of still unsatisfactory treatment outcomes in gynecologic oncology, particularly in patients with ovarian cancer, cervical cancer and endometrial cancer.
PL
Hipertermia może być definiowana jako metoda kontrolowanego podwyższenia temperatury, której celem jest guz nowotworowy, jak również otaczające tkanki, narządy, część lub nawet całe ciało. Pierwsze zastosowanie hipertermii w czasach nowożytnych zostało opisane przez Westermarka w 1898 roku; użył on pojemników z ciągłym przepływem wody o temperaturze 42-44°C w leczeniu nieoperacyjnych przypadków raka szyjki macicy. W dotychczas przeprowadzonych badaniach hipertermię łączy się ze standardowo stosowanymi terapiami – radioterapią oraz chemioterapią dożylną i dootrzewnową. W badaniach stwierdzono również, że jednym z działań hipertermii jest indukowanie apoptozy zarówno zawiązanej z białkiem supresorowym p53, jak i w mechanizmie niezależnym. W zależności od zakresu stosowanych temperatur możemy podzielić hipertermię na: łagodną (około 39°C), o średnim nasileniu (od 40 do 41°C) oraz bardzo nasiloną (powyżej 42°C). Do chemioterapeutyków, których efekt działania zostaje zwiększony w wyniku łącznego stosowania z hipertermią, należą: leki alkilujące (ifosfamid, cyklofosfamid), antybiotyki przeciwnowotworowe (bleomycyna, adriamycyna, mitomycyna C i aktynomycyna), pochodne platyny, antymetabolity (5-fluorouracyl) oraz gemcytabina (podana dobę przed lub dobę po nagrzewaniu). Hipertermia w połączeniu z radioterapią wykazuje działanie synergistyczne. Działanie to zależne jest od uzyskanego wzrostu temperatury w tkance docelowej (im wyższa temperatura, tym większy efekt), czasu nagrzewania oraz kolejności łączenia obu tych metod. Wydaje się, iż hipertermia jest metodą, która może mieć wpływ na poprawę ciągle niezadowalających wyników leczenia w ginekologii onkologicznej, szczególnie u chorych na raka jajnika, szyjki macicy i endometrium.
Discipline
Year
Volume
7
Issue
4
Pages
264-269
Physical description
References
  • 1. Overgaard J.: History and heritage - an introduction. Over-gaard J. (red.): Hyperthermic Oncology. Taylor and Francis, London 1985: 3-8.
  • 2. Westermark F.: Über die Behandlung des ulzerierenden Cervixkarzinoms mittels konstanter Wärme. Zentralbl. Gynäcol. 1898; 22: 1335-1339.
  • 3. Wust P., Hildebrandt B., Sreenivasa G. i wsp.: Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002; 3: 487-497.
  • 4. Horsman M.R., Overgaard J.: Hyperthermia: a potent enhancer of radiotherapy. Clin. Oncol. (R. Coll. Radiol.) 2007; 19: 418-426.
  • 5. Sonveaux P.: Provascular strategy: targeting functional adaptations of mature blood vessels in tumors to selectively influence the tumor vascular reactivity and improve cancer treatment. Radiother. Oncol. 2008; 86: 300-313.
  • 6. Issels R.D.: Hyperthermia adds to chemotherapy. Eur. J. Cancer 2008; 44: 2546-2554.
  • 7. Bijelic L., Jonson A., Sugarbaker P.H.: Systematic review of cytoreductive surgery and heated intraoperative intraperitoneal chemotherapy for treatment of peritoneal carcinomatosis in primary and recurrent ovarian cancer. Ann. Oncol. 2007; 18: 1943-1950.
  • 8. Arunachalam K., Maccarini P., Juang T. i wsp.: Performance evaluation of a conformal thermal monitoring sheet sensor array for measurement of surface temperature distributions during superficial hyperthermia treatments. Int. J. Hyperthermia 2008; 24: 313-325.
  • 9. Rieke V, Butts Pauly K.: MR thermometry. J. Magn. Reson. Imaging 2008; 27: 376-390.
  • 10. Gellermann J., Hildebrandt B., Issels R. i wsp.: Noninvasive magnetic resonance thermography of soft tissue sarcomas during regional hyperthermia: correlation with response and direct thermometry. Cancer 2006; 107: 1373-1382.
  • 11. Ressel A., Weiss C., Feyerabend T.: Tumor oxygenation after radiotherapy, chemotherapy, and/or hyperthermia predicts tumor free survival. Int. J. Radiat. Oncol. Biol. Phys. 2001; 49: 1119-1125.
  • 12. Netherton H.: The use of hyperthermia to overcome tumour hypoxia in the treatment of advanced breast cancer. Journal of Radiotherapy in Practice 2008; 7: 39-46.
  • 13. Takahashi I., Emi Y., Hasuda S. i wsp.: Clinical application of hyperthermia combined with anticancer drugs for the treatment of solid tumors. Surgery 2002; 131 (supl.): S78-S84.
  • 14. Kitamura K., Saeki H., Kawaguchi H. i wsp.: Immunohis-tochemical status of the p53 protein and Ki-67 antigen using biopsied specimens can predict a sensitivity to neoadjuvant therapy in patients with esophageal cancer. Hepatogastroen-terology 2000; 47: 419-423.
  • 15. Ito A., Honda H., Kobayashi T.: Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunol. Immuno-ther. 2006; 55: 320-328.
  • 16. van der Heijden A.G., Verhaegh G., Jansen C.F.J. i wsp.: Effect of hyperthermia on the cytotoxicity of 4 chemotherapeutic agents currently used for the treatment of transitional cell carcinoma of the bladder: an in vitro study. J. Urol. 2005: 173: 1375-1380.
  • 17. Kampinga H.H.: Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int. J. Hyperthermia 2006; 22: 191-196.
  • 18. Franckena M., De Wit R., Ansink A.C. i wsp.: Weekly systemic cisplatin plus locoregional hyperthermia: an effective treatment for patients with recurrent cervical carcinoma in a previously irradiated area. Int. J. Hyperthermia 2007; 23: 443-450.
  • 19. Chen Q., Krol A., Wright A. i wsp.: Tumor microvascular permeability is a key determinant for antivascular effects of doxorubicin encapsulated in a temperature sensitive liposome. Int. J. Hyperthermia 2008; 24: 475-482.
  • 20. Cho C.H., Wust P., Hildebrandt B. i wsp.: Regional hyperthermia of the abdomen in conjunction with chemotherapy for peritoneal carcinomatosis: evaluation of two annular-phased-array applicators. Int. J. Hyperthermia 2008; 24: 399-408.
  • 21. Gusani N.J., Cho S.W., Colovos C. i wsp.: Aggressive surgical management of peritoneal carcinomatosis with low mortality in a high-volume tertiary cancer center. Ann. Surg. Oncol. 2008; 15: 754-763.
  • 22. Mirkes P.E.: Molecular/cellular biology of the heat stress response and its role in agent-induced teratogenesis. Mutat. Res. 1997; 396: 163-173.
  • 23. Mosser D.D., Caron A.W, Bourget L. i wsp.: Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol. Cell. Biol. 1997; 17: 5317-5327.
  • 24. Sreenivasa G., Hildebrandt B., Kümmel S. i wsp.: Radiochemotherapy combined with regional pelvic hyperthermia induces high response and resectability rates in patients with nonre-sectable cervical cancer >FIGO IIB “bulky”. Int. J. Radiat. Oncol. Biol. Phys. 2006; 66: 1159-1167.
  • 25. Westermann A.M., Jones E.L., Schem B.C. i wsp.: First results of triple-modality treatment combining radiotherapy, chemotherapy, and hyperthermia for the treatment of patients with stage IIB, III, and IVA cervical carcinoma. Cancer 2005; 104: 763-770.
  • 26. DeNardo G.L., DeNardo S.J.: Turning the heat on cancer. Cancer Biother. Radiopharm. 2008; 23: 671-680.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-a9d5c5dd-695a-462b-8f31-e9907077ef6a
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.