PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 74 | 280-287
Article title

Bound State Solutions of the Klein Gordon Equation with Woods-Saxon Plus Attractive Inversely Quadratic Potential Via Parametric Nikiforov-Uvarov Method

Content
Title variants
Languages of publication
EN
Abstracts
EN
We study the bound state solutions of the Klein-Gordon equation with Woods-Saxon plus attractive inversely quadratic potential using the parametric Nikiforov-Uvarov Method. We obtained the bound state energy eigenvalues and the corresponding normalized eigen functions expressed in terms of hypergeometric functions. Two special cases of this potential are discussed.
Discipline
Year
Volume
74
Pages
280-287
Physical description
Contributors
author
  • Physical/Theoretical Chemistry Unit, Department of Pure and Applied Chemistry, University of Calabar, Calabar, Cross River State, Nigeria
author
  • Physical/Theoretical Chemistry Unit, Department of Pure and Applied Chemistry, University of Calabar, Calabar, Cross River State, Nigeria
author
  • Physical/Theoretical Chemistry Unit, Department of Pure and Applied Chemistry, University of Calabar, Calabar, Cross River State, Nigeria
  • Physical/Theoretical Chemistry Unit, Department of Pure and Applied Chemistry, University of Calabar, Calabar, Cross River State, Nigeria
References
  • [1] Louis H., B. I. Ita., B. E. Nyong., T. O. Magu, S. Barka and N. A. Nzeata-Ibe. Radial solution of the s-wave D-dimensional Non-Relativistic Schrodinger equation for generalied manning-Rosen plus Mie-type nuclei potentials within the framewoark of parametric Nikifarov-Uvarov Method. Journal of Nigerian Association of Mathematical Physics vol. 36, No. 2, (July, 2016) 193-198
  • [2] Mohammet and Suleyman. Approximate solutions to the Nonlinear Klein-Gordon equation in the de sitter spacetime. Open Phys. 14 (2016) 314-320. DOI 10.1515/phys-2016-0037
  • [3] B. I. Ita, H. Louis, T. O. Magu and N. A. Nzeata-Ibe. Bound state solutions of the Schrodinger equation with Manning-Rosen plus a class of Yukawa potential using pekeris-like approximation of the coulombic term and parametric Nikifarov-Uvarov method. World Scientific News 70(2) (2017) 312-319
  • [4] B. I. Ita, A. I. Ikeuba, H. Louis and P. Tchoua. Solution of the Schrodinger equation with inversely quadratic Yukawa plus attractive radial potential using Nikiforov-Uvarov method. Journal of Theoretical Physics and Cryptography. IJTPC, Vol. 10, December, 2015. www.IJTPC.org
  • [5] Louis, H., B. I. Ita., B. E. Nyong, T. O. Magu, and N. A. Nzeata-Ibe. Approximate solution of the N-dimensional radial Schrodinger equation with Kratzer plus Reduced Pseudoharmonic Oscillator potential within the framework of Nikifarov-Uvarov Method. Journal of Nigerian Association of Mathematical Physics. vol. 36, No. 2. (July, 2016) 199-204
  • [6] Bayrak and Sahin. Exact Analytical Solution of the Klein–Gordon Equation in the Generalized Woods–Saxon Potential. Commun. Theor. Phys. 64(1) (2015) 259–262
  • [7] Louis H., B. I. Ita, Nyong, B. E, T. O. Magu (2017). Radial solution of the s-wave Klein-Gordon equation for generalied wood-saxon plus Mie-type potential using Nikifarov-Uvarov. J. Chem. Soc. Nigeria Vol. 41, No. 2, pp. 21-26
Document Type
short_communication
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-a965377b-27c5-4691-8194-46dcc4023431
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.