PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 117 | 235-242
Article title

Synthesis of Benzimidazole Using Reusable Nanocatalyst Zirconia and Sulfated Zirconia

Content
Title variants
Languages of publication
EN
Abstracts
EN
Benzimidazole derivatives have been synthesized by solid Nanocatalysts Zirconia and Sulfated Zirconia with Green reusablity method. Synthesis of benzimidazole was carried out by conventional as well as microwave method. Synthesis carried out by reacting o-phenylenediamine and few aldehydes in the presence of catalytic amount of Nanoparticles. Particles used were sized in between 53-100 nm. Nanoparticles and synthesized benzimidazole derivatives were characterized by DLS, powder XRD, SEM-EDX andMass, CHNS, FT-IR, NMR analysis respectively.
Year
Volume
117
Pages
235-242
Physical description
Contributors
  • Chemical Research Laboratory, Department of Chemistry, Saurashtra University, Rajkot - 36005, Gujarat, India
  • Chemical Research Laboratory, Department of Chemistry, Saurashtra University, Rajkot - 36005, Gujarat, India
  • Chemical Research Laboratory, Department of Chemistry, Saurashtra University, Rajkot - 36005, Gujarat, India
References
  • [1] X. Dai, G. G. Wildgoose, C. Salter, A. Crossley, R. G. Compton, Analytical chemistry 2006, 78, 6102–6108.
  • [2] A. Lu, E. emsp14L Salabas, F. Schüth, Angewandte Chemie International Edition 2007, 46, 1222–1244.
  • [3] S. Lyle, M. Daoud, C. E. Williams, Soft Matter Physics, Springer Science & Business Media, 2013.
  • [4] Verwey, E.J.W. & Overbeek, J. T. G. Theory of the Stability of Lyophobic Colloids. Elsevier Amsterdam 1948.
  • [5] I. Polmear, D. StJohn, J.-F. Nie, M. Qian, Light Alloys: Metallurgy of the Light Metals, Butterworth-Heinemann, 2017.
  • [6] M. Wu, Q. He, Q. Shao, Y. Zuo, F. Wang, H. Ni, ACS applied materials & interfaces 2011, 3, 3300–3307.
  • [7] J. M. Rosenholm, C. Sahlgren, M. Lindén, Nanoscale 2010, 2, 1870–1883.
  • [8] X. Li, L. Wang, Y. Fan, Q. Feng, F. Cui, Journal of Nanomaterials 2012, 2012, 6.
  • [9] B. Tyagi, M. K. Mishra, R. V. Jasra, Journal of Molecular Catalysis A: Chemical 2010, 317, 41–45.
  • [10] B. M. Reddy, P. M. Sreekanth, P. Lakshmanan, Journal of molecular catalysis A: chemical 2005, 237, 93–100.
  • [11] B. M. Reddy, P. M. Sreekanth, Tetrahedron letters 2003, 44, 4447–4449.
  • [12] D. Angeles-Beltrán, L. Lomas-Romero, V. H. Lara-Corona, E. González-Zamora, G. Negrón-Silva, Molecules 2006, 11, 731–738.
  • [13] A. Teimouri, A. N. Chermahini, Chinese Journal of Chemistry 2012, 30, 372–376.
  • [14] B. M. Reddy, M. K. Patil, Chemical reviews 2009, 109, 2185–2208.
  • [15] X.-Q. Li, L.-Z. Wang, Chinese Chemical Letters 2014, 25, 327–332.
  • [16] M. Abdollahi-Alibeik, M. Hajihakimi, Chemical Papers 2013, 67, 490–496.
  • [17] V. Tsukrenko, E. Dudnik, A. Shevchenko, Processing and Application of Ceramics 2012, 6, 151–157.
  • [18] S. Kumar, S. Kumar, P. Kumar, Medicinal Chemistry Research 2013, 22, 433–439.
  • [19] S. Muthukumaru Pillai, Journal of Chemical Research, Synopses 1999, 326–327.
  • [20] R. K. Rawal, R. Tripathi, S. Katti, C. Pannecouque, E. De Clercq, Bioorganic & medicinal chemistry 2007, 15, 1725–1731.
  • [21] G. Yadav, A. Pujari, Green Chemistry 1999, 1, 69–74.
  • [22] S. V. Jadhav, K. M. Jinka, H. C. Bajaj, Applied Catalysis A: General 2010, 390, 158–165.
  • [23] J. R. Sohn, H. W. Kim, Journal of Molecular Catalysis 1989, 52, 361–374.
  • [24] X. Song, A. Sayari, Catalysis Reviews 1996, 38, 329–412.
Document Type
short_communication
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-a938cedb-2fd8-4af3-81a8-199638857baf
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.