PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 81 | 2 | 257-267
Article title

Relativistic modeling of compact stars for charged anisotropic matter in a Tolman IV spacetime

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, we studied the behavior of relativistic objects considering Tolman IV form for the gravitational potential Z and a lineal equation of state within the framework of MIT-Bag model for the charged anisotropic matter. A physical analysis of electromagnetic field indicates that is regular in the origin and well behaved. The new obtained solution not admits singularities in the matter, charge density and metric functions. A graphical analysis indicates that the new stellar model satisfy all physical properties expected in a realistic star.
Discipline
Year
Volume
81
Issue
2
Pages
257-267
Physical description
Contributors
  • Department of Basic Sciences, Maritime University of the Caribbean, Catia la Mar, Venezuela
References
  • [1] P. K. Kuhfitting, Some remarks on exact wormhole solutions, Adv. Stud. Theor. Phys. 5, 365-367, 2011.
  • [2] J. Bicak, Einstein equations: exact solutions, Encyclopedia of Mathematical Physics, 2, 165-173, 2006.
  • [3] M. Malaver, Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9, 2013
  • [4] K. Komathiraj, S. D. Maharaj, Classes of exact Einstein-Maxwell solutions, Gen. Rel. Grav. 39, 2079-2093, 2008.
  • [5] R. Sharma, S, Mukherjee, S.D. Maharaj, General solution for a class of static charged stars, Gen. Rel. Grav. 33, 999-110, 2001.
  • [6] R. L. Bowers, E. P. T. Liang, Anisotropic spheres in general relativity, Astrophys. J. 188, 657, 1974
  • [7] M. Cosenza, L. Herrera, M. Esculpi, L. Witten, Some models of anisotropic spheres in general relativity, J. Math. Phys. 22(1), 118, 1981
  • [8] M. K. Gokhroo, A.L. Mehra, Anisotropic spheres with variable energy density in general relativity, Gen. Relat. Grav. 26(1), 75-84, 1994
  • [9] A. I. Sokolov, Phase transitions in a superfluid neutron liquid, Sov. Phys. JETP. 52, 575, 1980
  • [10] V. V. Usov, Electric fields at the quark surface of strange stars in the color-flavor locked phase, Phys. Rev. D 70, 067301, 2004
  • [11] K. Komathiraj, S. D. Maharaj, Analytical models for quark stars, Int. J. Mod. Phys., D16, pp. 1803-1811, 2007.
  • [12] M. Malaver, Models for quark stars with charged anisotropic matter, Research Journal of Modeling and Simulation 1(4), 65-71, 2014
  • [13] M. Malaver, Some new models for strange quark stars with isotropic pressure, AASCIT Communications, 1, 48-51, 2014
  • [14] S. Thirukkanesh, S.D. Maharaj, Charged anisotropic matter with linear equation of state, Class. Quantum Gravity, 25, 235001, 2008
  • [15] S. D. Maharaj, J. M, Sunzu, and S. Ray, Some simple models for quark stars, Eur. Phys. J. Plus. 129, 3, 2014.
  • [16] S. Thirukkanesh, F. C. Ragel, A class of exact strange quark star model, PRAMANA - Journal of physics 81(2), 275-286, 2013
  • [17] J. M. Sunzu, S.D. Maharaj S. Ray, Quark star model with charged anisotropic matter, Astrophysics. Space. Sci. 354, 517-524, 2014
  • [18] T. Feroze, A. Siddiqui, Charged anisotropic matter with quadratic equation of state, Gen. Rel. Grav. 43, 1025-1035, 2011
  • [19] T. Feroze, and A. Siddiqui, Some exact solutions of the Einstein-Maxwell equations with a quadratic equation of state, Journal of the Korean Physical Society 65(6), 944-947, 2014
  • [20] M. Malaver, Strange quark star model with quadratic equation of state, Frontiers of Mathematics and Its Applications 1(1), 9-15, 2014
  • [21] M. Malaver, Quark star model with charge distributions, Open Science Journal of Modern Physics 1(1), 6-11, 2014
  • [22] M. Malaver, Relativistic Modeling of Quark Stars with Tolman IV Type Potential, International Journal of Modern Physics and Application 2(1), 1-6, 2015
  • [23] M. Malaver, Classes of Relativistic Stars with Quadratic Equation of State, World Scientific News 57, 70-80, 2016
  • [24] P. M. Takisa, S. D. Maharaj, Some charged polytropic models, Gen. Rel. Grav. 45, 1951-1969, 2013.
  • [25] S. Thirukkanesh, F. C. Ragel, Exact anisotropic sphere with polytropic equation of state, PRAMANA - Journal of physics 78(5), 687-696, 2012
  • [26] M. Malaver, Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal of Astronomy and Astrophysics 1(4), 41-46, 2013
  • [27] M. Malaver, Regular model for a quark star with Van der Waals modified equation of state, World Applied Programming 3, 309-313, 2013
  • [28] S. Thirukkanesh, F.C. Ragel, Strange star model with Tolmann IV type potential, Astrophysics and Space Science 352(2), 743-749, 2014
  • [29] M. K Mak, T. Harko, Quark stars admitting a one-parameter group of conformal motions, Int. J. Mod. Phys. D13, 149-156, 2004
  • [30] P. Bhar, M. H. Murad, N. Pant, Relativistic anisotropic stellar models with Tolman VII spacetime, Astrophysics and Space Science, 359, 13. doi: 10.1007/s10509-015-2462-9, 2015
  • [31] P. Bhar, K. N., Singh, N. Pant, Compact star modeling with quadratic equation of state in Tolman VII spacetime, Indian Journal of Physics, doi:10.1007/s12648-017-0963-9, 2017.
  • [32] M.C. Durgapal, R. Bannerji, New analytical stellar model in general relativity. Phys. Rev. D27, 328-331, 1983
  • [33] R. C. Tolman, Static solutions of Einstein's Field Equations for spheres of fluid, Phys. Rev. 55, 364-373, 1939
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-a8ce9860-ea66-45ec-b444-77e953ccfb8f
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.