Preferences help
enabled [disable] Abstract
Number of results
2017 | 81 | 2 | 257-267
Article title

Relativistic modeling of compact stars for charged anisotropic matter in a Tolman IV spacetime

Title variants
Languages of publication
In this paper, we studied the behavior of relativistic objects considering Tolman IV form for the gravitational potential Z and a lineal equation of state within the framework of MIT-Bag model for the charged anisotropic matter. A physical analysis of electromagnetic field indicates that is regular in the origin and well behaved. The new obtained solution not admits singularities in the matter, charge density and metric functions. A graphical analysis indicates that the new stellar model satisfy all physical properties expected in a realistic star.
Physical description
  • Department of Basic Sciences, Maritime University of the Caribbean, Catia la Mar, Venezuela
  • [1] P. K. Kuhfitting, Some remarks on exact wormhole solutions, Adv. Stud. Theor. Phys. 5, 365-367, 2011.
  • [2] J. Bicak, Einstein equations: exact solutions, Encyclopedia of Mathematical Physics, 2, 165-173, 2006.
  • [3] M. Malaver, Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9, 2013
  • [4] K. Komathiraj, S. D. Maharaj, Classes of exact Einstein-Maxwell solutions, Gen. Rel. Grav. 39, 2079-2093, 2008.
  • [5] R. Sharma, S, Mukherjee, S.D. Maharaj, General solution for a class of static charged stars, Gen. Rel. Grav. 33, 999-110, 2001.
  • [6] R. L. Bowers, E. P. T. Liang, Anisotropic spheres in general relativity, Astrophys. J. 188, 657, 1974
  • [7] M. Cosenza, L. Herrera, M. Esculpi, L. Witten, Some models of anisotropic spheres in general relativity, J. Math. Phys. 22(1), 118, 1981
  • [8] M. K. Gokhroo, A.L. Mehra, Anisotropic spheres with variable energy density in general relativity, Gen. Relat. Grav. 26(1), 75-84, 1994
  • [9] A. I. Sokolov, Phase transitions in a superfluid neutron liquid, Sov. Phys. JETP. 52, 575, 1980
  • [10] V. V. Usov, Electric fields at the quark surface of strange stars in the color-flavor locked phase, Phys. Rev. D 70, 067301, 2004
  • [11] K. Komathiraj, S. D. Maharaj, Analytical models for quark stars, Int. J. Mod. Phys., D16, pp. 1803-1811, 2007.
  • [12] M. Malaver, Models for quark stars with charged anisotropic matter, Research Journal of Modeling and Simulation 1(4), 65-71, 2014
  • [13] M. Malaver, Some new models for strange quark stars with isotropic pressure, AASCIT Communications, 1, 48-51, 2014
  • [14] S. Thirukkanesh, S.D. Maharaj, Charged anisotropic matter with linear equation of state, Class. Quantum Gravity, 25, 235001, 2008
  • [15] S. D. Maharaj, J. M, Sunzu, and S. Ray, Some simple models for quark stars, Eur. Phys. J. Plus. 129, 3, 2014.
  • [16] S. Thirukkanesh, F. C. Ragel, A class of exact strange quark star model, PRAMANA - Journal of physics 81(2), 275-286, 2013
  • [17] J. M. Sunzu, S.D. Maharaj S. Ray, Quark star model with charged anisotropic matter, Astrophysics. Space. Sci. 354, 517-524, 2014
  • [18] T. Feroze, A. Siddiqui, Charged anisotropic matter with quadratic equation of state, Gen. Rel. Grav. 43, 1025-1035, 2011
  • [19] T. Feroze, and A. Siddiqui, Some exact solutions of the Einstein-Maxwell equations with a quadratic equation of state, Journal of the Korean Physical Society 65(6), 944-947, 2014
  • [20] M. Malaver, Strange quark star model with quadratic equation of state, Frontiers of Mathematics and Its Applications 1(1), 9-15, 2014
  • [21] M. Malaver, Quark star model with charge distributions, Open Science Journal of Modern Physics 1(1), 6-11, 2014
  • [22] M. Malaver, Relativistic Modeling of Quark Stars with Tolman IV Type Potential, International Journal of Modern Physics and Application 2(1), 1-6, 2015
  • [23] M. Malaver, Classes of Relativistic Stars with Quadratic Equation of State, World Scientific News 57, 70-80, 2016
  • [24] P. M. Takisa, S. D. Maharaj, Some charged polytropic models, Gen. Rel. Grav. 45, 1951-1969, 2013.
  • [25] S. Thirukkanesh, F. C. Ragel, Exact anisotropic sphere with polytropic equation of state, PRAMANA - Journal of physics 78(5), 687-696, 2012
  • [26] M. Malaver, Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal of Astronomy and Astrophysics 1(4), 41-46, 2013
  • [27] M. Malaver, Regular model for a quark star with Van der Waals modified equation of state, World Applied Programming 3, 309-313, 2013
  • [28] S. Thirukkanesh, F.C. Ragel, Strange star model with Tolmann IV type potential, Astrophysics and Space Science 352(2), 743-749, 2014
  • [29] M. K Mak, T. Harko, Quark stars admitting a one-parameter group of conformal motions, Int. J. Mod. Phys. D13, 149-156, 2004
  • [30] P. Bhar, M. H. Murad, N. Pant, Relativistic anisotropic stellar models with Tolman VII spacetime, Astrophysics and Space Science, 359, 13. doi: 10.1007/s10509-015-2462-9, 2015
  • [31] P. Bhar, K. N., Singh, N. Pant, Compact star modeling with quadratic equation of state in Tolman VII spacetime, Indian Journal of Physics, doi:10.1007/s12648-017-0963-9, 2017.
  • [32] M.C. Durgapal, R. Bannerji, New analytical stellar model in general relativity. Phys. Rev. D27, 328-331, 1983
  • [33] R. C. Tolman, Static solutions of Einstein's Field Equations for spheres of fluid, Phys. Rev. 55, 364-373, 1939
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.