Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 65 | 5-6 | 67–79

Article title

Niewirusowe preparaty genowe – charakterystyka metod oceny właściwości fizykochemicznych

Content

Title variants

EN
Non-viral gene preparations – methods of evaluation of physico-chemical properties

Languages of publication

PL

Abstracts

PL
Stanowiące podstawę terapii genowej geny kodujące terapeutyczne białka wprowadzane są do komórek za pomocą nośników wirusowych i niewirusowych. Brak jednoznacznie bezpiecznych, a jednocześnie efektywnych metod wprowadzania genów sprawia, iż zastosowanie terapii genowej w klinice jest wciąż ograniczone. Prowadzone są intensywne badania poświęcone wektorom niewirusowym – nośnikom genów, które wydają się stabilne in vitro i bezpieczne dla pacjentów. Kompleksy molekularne plazmidowego DNA (pDNA) i związków polimerowych tworzą się spontanicznie, w wyniku oddziaływań elektrostatycznych. Sposób oddziaływania pDNA ze związkami polimerowymi wpływa na właściwości fi zykochemiczne kompleksów pDNA : wektor kationowy, które mają ogromne znaczenie dla efektywności wprowadzania genów do komórek (transfekcji). Wdrażanie nowych, aktywnych biologicznie preparatów genowych do badań eksperymentalnych wiąże się z koniecznością prowadzenia prac poświęconych ocenie ich właściwości fi zykochemicznych i biochemicznych, które wykonuje się metodami stosowanymi w laboratoriach inżynierii genetycznej; często szuka się również nowych rozwiązań analitycznych. W artykule podjęto próbę scharakteryzowania niewirusowych preparatów genowych głównie w kontekście oceny ich właściwości fizykochemicznych. Opisano aktualnie stosowane metody badania preparatów genowych. Świadomość możliwości prowadzenia w pracowniach różnych dyscyplin naukowych badań właściwości kompleksów pDNA : : nośnik może pomóc w projektowaniu nowych preparatów genowych i próbach ich wykorzystania w leczeniu chorych.
EN
Gene therapy is based on the use of viral and non-viral nucleic acid preparations. They allow to administration of the therapeutic genes into targeted cells. Due to the lack of safe and eff ective methods of gene delivery, use of gene therapy in the clinic is restricted. The large attention is focused on studies of non-viral vectors, which seem to be stable and safe gene vehicles. Molecular complexes between plasmid DNA and cationic polymers, such as cationic lipids, polypeptides are formed spontaneously, as a result of electrostatic interactions. The mode of interaction of pDNA with polymeric compounds has a strict infl uence on physico-chemical properties of pDNA : cationic vector complexes. It is closely related to the gene transfer effi ciency (transfection). The evaluation of physical and molecular mechanisms of complex formation is crucial for effi cient gene administration into the cells. In this article various methods of studies of physicochemical properties of pDNA : vehicle complexes are described with special attention to their experimental/clinical value.

Discipline

Year

Volume

65

Issue

5-6

Pages

67–79

Physical description

Contributors

  • Zakład Biologii Komórki Centrum Onkologii – Instytut im. Marii Skłodowskiej-Curie w Warszawie
  • Zakład Biologii Komórki Centrum Onkologii – Instytut im. M. Skłodowskiej-Curie w Warszawie ul. Roentgena 5 02-781 Warszawa tel. 22 546 26 20

References

  • 1. Ciani L., Ristori S., Salvati A., Calamai L., Martini G. DOTAP/DOPE and DC-Chol/ /DOPE lipoplexes for gene delivery: Zeta potential measurements and electron spin resonance spectra. Biochim. Biophys. Acta 2004; 1664: 70–79.
  • 2. Russ V., Elfberg H., Thoma C., Kloeckner J., Ogris M., Wagner E. Novel degradable oligoethylenimine acrylate ester-based pseudodendrimers for in vitro and in vivo gene transfer. Gene Ther. 2008; 15: 18–29.
  • 3. Anderson D.G., Akinc A., Hossain N., Langer R. Structure/property studies of polymeric gene delivery using a library of poly(􀈕-amino esters). Mol. Ther. 2005; 11: 426–434.
  • 4. Su J, Kim C-J., Ciftci K. Characterization of poly((N-trimethylammonium) ethylmethacrylate)- based gene delivery systems. Gene Ther. 2002; 9: 1031–1036.
  • 5. Hollon T, Researchers and regulators refl ect on fi rst gene therapy death. Am. J. Ophthalmol. 2000; 129: 701.
  • 6. Kohn D.B., Sadelain M., Glorioso J.C. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat. Rev. Cancer 2003; 3: 477–488.
  • 7. Margineanu A., De Feyter S., Melnikov S i wsp. Complexation of Lipofectamine and cholesterol-modifi ed pDNA sequences studied by Single-Molecule Fluorescence Techniques. Biomacromolecules 2007; 8: 3382–3392.
  • 8. Pack D.W., Putnam D., Langer R. Design of imidazole-containing endosomolytic biopolymers for gene delivery. Biotechnol. Bioeng. 2000; 67: 217–223.
  • 9. Ledley F.D. Nonviral gene-therapy – the promise of genes as pharmaceutical products. Hum. Gene Ther. 1995; 6: 1129 –1144.
  • 10. Luo D., Saltzman W.M. Synthetic pDNA delivery systems. Nat. Biotechnol. 2000; 18: 33–37.
  • 11. Slita A.V., Kasyanenko N.A., Nazarova O.V. i wsp. pDNA–polycation complexes. Eff ect of polycation structure on physicochemical and biological properties. J. Biotechnol. 2007; 127: 679–693.
  • 12. Middaugh C.R., Ramsey J.D. Analysis of cationic-lipid-plasmid-pDNA complexes. Anal. Chem. 2007; 79: 7240–7248.
  • 13. Nguyen H-K., Lemieux P., Vinogradov S.V. i wsp. Evaluation of polyether-pol yethyleneimine graft copolymers as gene transfer agents. Gene Ther. 2000; 7: 126 –138.
  • 14. Rodrýguez-Pulido A., Ortega F., Llorca O., Aicart E., Junquera E. A physicochemical characterization of the interaction between DC-Chol/DOPE cationic liposomes and pDNA. J. Phys. Chem. 2008; 112: 12555–12565.
  • 15. http://www.promega.com/paguide/ chap12.htm
  • 16. Bednarek I., Cholewa K., Czajka-Uhryn M. Wprowadzenie informacji genetycznej do komórek, wektory molekularne, metody transferu. W: Bednarek I. red. Inżynieria genetyczna i terapia genowa. Wyd. Śląskiego Uniwersytetu Medycznego, Katowice 2008: 29-49.
  • 17. Rolland A., Felgner P.L. Non-viral gene delivery systems. Adv. Drug Delivery Rev. 1998; 30: 1–3.
  • 18. http://www.wiley.co.uk/genmed/clinical/
  • 19. Ciani L., Ristori S., Bonechi C., Rossi C., Martini G. Eff ect of the preparation procedure on the structural properties of oligonucleotide/ cationic liposome complexes (lipoplexes) studied by electron spin resonance and Zeta potential. Biophys. Chem. 2007; 131: 80–87.
  • 20. Eastman S.J., Siegel C., Tousignant J., Smith A.E., Cheng S.H., Scheule R.K. Biophysical characterization of cationic lipid : pDNA complexes. Biochim. Biophys. Acta 1997; 1325: 41–62.
  • 21. Tranchant I., Thompson B., Nicolazzi C., Mignet N., Scherman D. Physicochemical optimisation of plasmid delivery by cationic lipids. J. Gene Med. 2004; 6: S24–S35.
  • 22. Aljaberi A., Spelios M., Kearns M., Selvi B., Savva M. Physicochemical properties aff ecting lipofection potency of a new series of 1,2-dialkoylamidopropane-based cationic lipids. Colloids Surf. B Biointerfaces 2007; 57: 108–117.
  • 23. Ferrari M.E., Rusalov D., Enas J., Wheeler C.J. Trends in lipoplex physical properties dependent on cationic lipid structure, vehicle and complexation procedure do not correlate with biological activity. Nucleic Acids Res. 2001; 29: 1539–1548.
  • 24. Barteau B., Chčvre R., Letrou-Bonneval E., Labas R., Lambert O., Pitard B. Physicochemical parameters of non-viral vectors that govern transfection effi ciency. Curr. Gene Ther. 2008; 8: 313–323.
  • 25. Mortazavi S.M., Mohammadabadi M.R., Khosravi-Darani K., Mozafari M.R. Preparation of liposomal gene therapy vectors by a scalable method without using volatile solvents or detergents. J. Biotechnology 2007; 129: 604–613.
  • 26. Jeff s L.B., Palmer L.R., Ambegia E.G., Giesbrecht C., Ewanick S., MacLachlan I. A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid pDNA. Pharm. Res. 2005; 22: 362–372.
  • 27. Bhattacharya S, Mandal S. Interaction of surfactants with pDNA. Role of hydrophobicity and surface charge on interaction and pDNA melting. Biochim. Biophys. Acta 1997; 1323: 29–44.
  • 28. Lesage D., Cao A., Briane D. i wsp. Evaluation and optimization of pDNA delivery into gliosarcoma 9L cells by a cholesterol- based cationic liposome. Biochim. Biophys. Acta 2002; 1564: 393–402.
  • 29. Kim S.T., Lee K.-M., Park H.-J. i wsp. Topical delivery of interleukin-13 antisense oligonucleotides with cationic elastic liposome for the treatment of atopic dermatitis. J. Gene Med. 2009; 11: 26–37.
  • 30. Kozubek A. Wstęp do technologii liposomowej. Wrocław 2004: 5-30.http://www. ibmb.uni.wroc.pl/studia/liposomes.pdf
  • 31. Mok K.W.C., Lam A.M.I., Cullis P.R. Stabilized plasmid-lipid particles: factors infl uencing plasmid entrapment and transfection properties. Biochim. Biophys. Acta 1999, 1419: 137–150.
  • 32. Xu Y., Hui S.W., Frederik P., Szoka Jr F.C. Physicochemical characterization and purifi cation of cationic lipoplexes. Biophys. J. 1999; 77: 341–353.
  • 33. Zuhorn I.S., Visser W.H., Bakowsky U., Engberts J.B.F.N., Hoekstra D. Interference of serum with lipoplex-cell interaction: modulation of intracellular processing. Biochim. Biophys. Acta 2002; 1560: 25–36.
  • 34. Dass C.R., Walker T.L., Kalle W.H.J., Burton M.A. A microsphere-lipoplex (microplex) vector for targeted gene therapy of cancer. I. Construction and in vitro evaluation. Drug Delivery 1999; 6: 259–269.
  • 35. Dass C.R., Walker T.L., Burton M.A. Liposomes containing cationic dimethyl dioctadecyl ammonium bromide: formulation, quality control, and lipofection effi - ciency. Drug Delivery 2002; 9: 11–18.
  • 36. Guy J., Drabek D., Antoniou M. Delivery of pDNA into mammalian cells by receptor- mediated endocytosis and gene therapy. Mol. Biotechnol. 1995; 3: 237–248.
  • 37. http://www.staff .amu.edu.pl/~pf2/ docs/92_Rozpraszanie_swiatla.pdf
  • 38. Tang M.X., Szoka FC. The influence of polymer structure on the interactions of cationic polymers with pDNA and morphology of the resulting complexes. Gene Ther. 1997; 4: 823–832.
  • 39. Oliveira A.C., Ferraz M.P., Monteiro F.J., Simoes S. Cationic liposome–pDNA complexes as gene delivery vectors: development and behaviour towards bone-like cells. Acta Biomaterialia 2009; 5: 2142– 2151.
  • 40. Mislick K.A., Baldeschwieler J.D. Evidence for the role of proteoglycans in cation-mediated gene transfer. P. N. A. S. 1996; 93: 12349–12354.
  • 41. Wiethoff C.M, Smith J.G, Koe G.S., Middaugh C.R. The potential role of proteoglycans in cationic lipid-mediated gene delivery. Studies of the interaction of cationic lipid-pDNA complexes with model glycosaminoglycans. J. Biol. Chem. 2001; 276: 32806–32813.
  • 42. Hirsch-Lerner D., Zhanga M., Eliyahua H., Ferrari M.E., Wheeler C.J., Barenholz Y. Eff ect of “helper lipid’’ on lipoplex electrostatics. Biochim. Biophys. Acta 2005; 1714: 71–84.
  • 43. Gustafsson J., Arvidson G., Karlsson G., Almgren M. Complexes between cationic liposomes and pDNA visualized by cryo- TEM. Biochim. Biophys. Acta 1995; 1235: 305–312.
  • 44. Tam P., Monck M., Lee D. i wsp. Stabilized plasmid-lipid particles for systemic gene therapy. Gene Ther. 2000; 7: 1867 –1874.
  • 45. Simberg D., Danino D., Talmon Y. i wsp. Phase behavior, pDNA ordering, and size instability of cationic lipoplexes. Relevance to optimal transfection activity. J. Biol. Chem. 2001; 276: 47453–47459.
  • 46. Chabaud P., Camplo M., Payet D. i wsp. Cationic nucleoside lipids for gene delivery. Bioconjug. Chem. 2006; 17: 466−472.
  • 47. Vonarbourg A., Passirani C., Desigaux L. i wsp. The encapsulation of pDNA molecules within biomimetic lipid nanocapsules. Biomaterials 2009; 30: 3197–3204.
  • 48. Marty R., N’soukpoe-Kossi C.N., Charbonneau D., Weinert C.M., Kreplak L., Tajmir-Riahi H.-A. Structural analysis of pDNA complexation with cationic lipids. Nucleic Acids Res. 2009; 37: 849–857.
  • 49. Radler J.O, Koltover I., Salditt T. i wsp. Structure of pDNA–cationic liposome complexes: pDNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 1997; 275: 810–814.
  • 50. Koltover I., Salditt T., Radler J.O., Safi - nya C.R. An inverted hexagonal phase of cationic liposome-pDNA complexes related to pDNA release and delivery. Science 1998; 281: 78–81.
  • 51. Congiu A., Pozzi D., Esposito C., Castellano C., Mossa G. Correlation between structure and transfection efficiency: a study of DC-Chol−DOPE/pDNA complexes. Colloids Surf. B Biointerfaces 2004; 36: 43–48.
  • 52. Sakuragi M., Kusuki S., Hamada E. i wsp. Supramolecular structures of benzyl amine derivate/pDNA complexes explored with Synchrotron Small Angle X-ray Scattering at SPring-8. J. Phys.: Conf. Ser. 2009; 184: 012008.
  • 53. Zelphati O., Szoka F. Intracellular distribution and mechanism of delivery of oligonucleotides mediated by cationic lipids. Pharm. Res. 1996; 13: 1367–1372.
  • 54. Braun C.S., Jas G.S., Choosakoonkriang S., Koe G.S., Smith J.G., Middaugh C.R. The structure of pDNA within cationic/pDNA complexes. Biophys. J. 2003; 84: 1114 –1123.
  • 55. Choosakoonkriang S., Lobo B.A., Koe G.S., Koe J.G., Middaugh C.R. Biophysical characterization of PEI/pDNA complexes. J. Pharm. Sci. 2003; 92: 1710–1722.
  • 56. Braun C.S., Jas G.S., Choosakoonkriang S., Koe G.S., Smith J.G., Middaugh C.R. Structure/function relationships of polyamidoamine/ pDNA dendrimers as gene delivery vehicles. J. Pharm. Sci. 2005; 94: 423–436.
  • 57. Lobo B.A., Vetro J.A., Suich D.M., Zuckermann R.N., Middaugh C.R. Structure/ function analysis of peptoid/lipitoid: pDNA complexes. J. Pharm. Sci. 2003; 92: 1905–1918.
  • 58. Morris V.B., Neethu S., Abraham T.E., Pillai C.K.S., Sharma Ch.P. Studies on the condensation of depolymerized chitosans with pDNA for preparing chitosan-pDNA nanoparticles for gene delivery applications. J. Biomed. Mater. Res. 2009; 89B: 282–292.
  • 59. Wiethoff Ch.M., Gill M.L., Koe G.S., Koe J.G., Middaugh C.R. The structural organization of cationic lipid-pDNA complexes. J. Biol. Chem. 2002; 277: 44980–44987.
  • 60. Chen H.H., Ho Y.-P., Jiang X., Mao H.- Q., Wang T.-H., Leong K.W. Simultaneous non-invasive analysis of pDNA condensation and stability by two-step QD-FRET. Nano Today 2009; 4: 125–134.
  • 61. Eliyahua H., Josepha A., Schillemans J.P., Azzamb T., Dombb A.J., Barenholz Y. Characterization and in vivo performance of dextran–spermine polyplexes and DOTAP/ cholesterol lipoplexes administered locally and systemically. Biomaterials 2007; 28: 2339–2349.
  • 62. Madeira C., Loura L.M., Aires-Barros M.R., Fedorov A., Prieto M. Characterization of pDNA/lipid complexes by Fluorescence Resonance Energy Transfer. Biophys. J. 2003; 85: 3106–3119.
  • 63. Lobo B.A., Davis A., Koe G., Smith J.G., Middaugh C.R. Isothermal titration calorimetric analysis of the interaction between cationic lipids and plasmid pDNA. Arch. Biochem. Biophys. 2001; 386: 95–105.
  • 64. http://www.bip.minrol.gov.pl/File- Repozytory/FileRepozytoryShowImage. aspx?item_id=6650
  • 65. Lobo B.A., Rogers S.A., Choosakoonkriang S., Smith J.G., Koe G., Middaugh C.R. Diff erential scanning calorimetric studies of the thermal stability of plasmid pDNA complexed with cationic lipids and polymers. J. Pharm. Sci. 2002; 91: 454–466.
  • 66. Gleich L.L., Gluckman J.L., Armstrong S. i wsp. Alloantigen gene therapy for squamous cell carcinoma of the head and neck: results of a phase-1 trial. Arch. Otolaryngol. Head Neck Surg. 1998; 124: 1097–1104.
  • 67. Veelken H., Mackensen A., Lahn M. i wsp. A phase-I clinical study of autologous tumor cells plus interleukin-2-genetransfected allogeneic fi broblasts as a vaccine in patients with cancer. Int. J. Cancer 1997; 70: 269–277.
  • 68. Yoshida J., Mizuno M., Fuji M. i wsp. Human gene therapy for malignant gliomas (glioblastoma multiforme and anaplastic astrocytoma) by in vivo transduction with human interferon beta gene using cationic liposomes. Hum. Gene Ther. 2004; 15: 77–86.
  • 69. Konstan M.W., Davis P.B., Wagener J.S. i wsp. Compacted pDNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fi brosis transmembrane regulator reconstitution. Hum. Gene Ther. 2004; 15: 1255–1269.
  • 70. Noone P.G., Hohneker K.W., Zhou Z. i wsp. Safety and biological effi cacy of a lipid-CFTR complex for gene transfer in the nasal epithelium of adult patients with cystic fi brosis. Mol. Ther. 2000; 1: 105–114.
  • 71. Brigham K.L., Lane K.B., Meyrick B. i wsp. Transfection of nasal mucosa with a normal 􀄮1-antitrypsin gene in 􀄮1-antitrypsin- defi cient subjects: Comparison with protein therapy. Hum. Gene Ther. 2000; 11: 1023–1032.
  • 72. http://mslab.polymer.pusan.ac.kr/sub4/ dsc08.gif

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-a816d910-ea92-4b74-9e09-0557b322e0b5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.